Entity

Time filter

Source Type


Barribeau S.M.,ETH Zurich | Villinger J.,Seoul National University | Waldman B.,Molecular Biology and Bioinformatics Unit | Waldman B.,Lincoln University at Christchurch
Biology Letters | Year: 2012

Major histocompatibility complex (MHC) genes determine immune repertoires and social preferences of vertebrates. Immunological regulation of microbial assemblages associated with individuals influences their sociality, and should also affect their life-history traits. We exposed Xenopus laevis tadpoles to water conditioned by adult conspecifics. Then, we analysed tadpole growth, development and survivorship as a function of MHC class I and class II peptide-binding region amino acid sequence similarities between tadpoles and frogs that conditioned the water to which they were exposed. Tadpoles approached metamorphosis earlier and suffered greater mortality when exposed to immunogenetically dissimilar frogs. The results suggest that developmental regulatory cues, microbial assemblages or both are specific to MHC genotypes. Tadpoles may associate with conspecifics with which they share microbiota to which their genotypes are well adapted. © 2011 The Royal Society. Source


Villinger J.,Molecular Biology and Bioinformatics Unit | Waldman B.,Lincoln University at Christchurch | Waldman B.,Seoul National University
Proceedings of the Royal Society B: Biological Sciences | Year: 2012

Genes of the major histocompatibility complex (MHC) that underlie the adaptive immune system may allow vertebrates to recognize their kin. True kin-recognition genes should produce signalling products to which organisms can respond. Allelic variation in the peptide-binding region (PBR) of MHC molecules determines the pool of peptides that can be presented to trigger an immune response. To examine whether these MHC peptides also might underlie assessments of genetic similarity, we tested whether Xenopus laevis tadpoles socially discriminate between pairs of siblings with which they differed in PBR amino acid sequences. We found that tadpoles (four sibships, n 1/4 854) associated preferentially with siblings with which they were more similar in PBR amino acid sequence. Moreover, the strength of their preference for a conspecific was directly proportional to the sequence similarity between them. Discrimination was graded, and correlated more closely with functional sequence differences encoded by MHC class I and class II alleles than with numbers of shared haplotypes. Our results thus suggest that haplotype analyses may fail to reveal fine-scale behavioural responses to divergence in functionally expressed sequences. We conclude that MHC-PBR gene products mediate quantitative social assessment of immunogenetic similarity that may facilitate kin recognition in vertebrates. © 2012 The Royal Society. Source


BACKGROUND: Microscopy and rapid diagnostic tests (RDTs) are common tools for diagnosing malaria, but are deficient in detecting low Plasmodium parasitaemia. A novel molecular diagnostic tool (nPCR-HRM) that combines the sensitivity and specificity of nested PCR (nPCR) and direct PCR-high resolution melting analysis (dPCR-HRM) was developed. To evaluate patterns of anti-malarial drug administration when no parasites are detected, nPCR-HRM was employed to screen blood samples for low parasitaemia from febrile patients without microscopically detectable Plasmodium infections in a rural malaria-endemic setting.METHODS: Blood samples (n = 197) were collected in two islands of Lake Victoria, Kenya, from febrile patients without Plasmodium detectable by microscopy or RDTs. 18S rRNA gene sequences were amplified from extracted DNA by nPCR-HRM, nPCR, and dPCR-HRM to detect and differentiate Plasmodium parasites. The limits of detection (LoD) were compared using serial dilutions of the WHO International Standard for P. falciparum DNA. Data on administration of anti-malarials were collected to estimate prescription of anti-malarial drugs to patients with and without low parasitaemia Plasmodium infections.RESULTS: The coupled nPCR-HRM assay detected Plasmodium parasites with greater sensitivity (LoD = 236 parasites/mL) than either nPCR (LoD = 4,700 parasites/mL) or dPCR-HRM (LoD = 1,490 parasites/mL). Moreover, nPCR-HRM detected and differentiated low-parasitaemia infections in significantly greater proportions of patients than did either nPCR or dPCR-HRM (p-value <0.001). Among these low-parasitaemia infections, 67.7% of patients were treated with anti-malarials, whereas 81.5% of patients not infected with Plasmodium parasites were treated with anti-malarials.CONCLUSIONS: The enhanced sensitivity of nPCR-HRM demonstrates limitations of differential febrile illness diagnostics in rural malaria endemic settings that confound epidemiological estimates of malaria, and lead to inadvertent misadministration of anti-malarial drugs. This is the first study that employs low-parasitaemia Plasmodium diagnostics to quantify the prescription of anti-malarial drugs to both non-malaria febrile patients and patients with low-parasitaemia Plasmodium infections. nPCR-HRM enhances low-parasitaemia malaria diagnosis and can potentially surmount the deficiencies of microscopy and RDT-based results in determining low-parasitaemia Plasmodium infection rates for evaluating malaria elimination efforts. The findings highlight the need for improved differential diagnostics of febrile illness in remote malaria endemic regions. Source


Chore J.K.,Egerton University | Obonyo M.,Egerton University | Wachira F.N.,Egerton University | Mireji P.O.,Molecular Biology and Bioinformatics Unit
Journal of insect science (Online) | Year: 2014

Management of mosquito vectors by current classes of mosquitocides is relatively ineffective and necessitates prospecting for novel insecticides with different modes of action. Larvicidal activities of 15 crude extracts from three geographically isolated Aloe ngongensis (Christian), Aloe turkanensis (Christian), and Aloe fibrosa (Lavranos & L.E.Newton) (Xanthorrhoeaceae) species (five each) were evaluated against Aedes aegypti (Linnaeus in Hasselquist) (Diptera: Culiciade L.) yellow fever mosquito. Freshly collected leaves were separately shade-dried to constant weight at room temperature (25 ± 2°C) and powdered. Each powder was macerated in solvents of increasing polarity (hexane, chloroform, ethyl acetate, acetone, and methanol) for 72 h and subsequently filtered. Third-instar larvae (n = 25) of the mosquito were exposed to the extracts at different concentrations for 24 h to establish dose response relationships. All the fractions of A. ngongensis were active below 1 mg/ml except A. fibrosa and A. turkanensis. The highest activity (LC50) mg/ml was obtained with extracts of A. fibrosa hexane (0.05 [0.04-0.06]), followed by A. ngongensis hexane (0.11 [0.08-0.15]) and A. turkanensis ethyl acetate (0.11 [0.09-0.12]). The activities are apparently Aloe species specific and extraction solvent dependent. These findings suggest that extracts from selected Aloe species have mosquitocidal principles that can be exploited in development of new insecticides. © The Author 2014. Published by Oxford University Press on behalf of the Entomological Society of America. Source


Macharia R.,Molecular Biology and Bioinformatics Unit | Macharia R.,University of the Western Cape | Mireji P.,The New School | Mireji P.,Kenya Agricultural Research Institute | And 5 more authors.
PLoS Neglected Tropical Diseases | Year: 2016

For decades, odour-baited traps have been used for control of tsetse flies (Diptera; Glossinidae), vectors of African trypanosomes. However, differential responses to known attractants have been reported in different Glossina species, hindering establishment of a universal vector control tool. Availability of full genome sequences of five Glossina species offers an opportunity to compare their chemosensory repertoire and enhance our understanding of their biology in relation to chemosensation. Here, we identified and annotated the major chemosensory gene families in Glossina. We identified a total of 118, 115, 124, and 123 chemosensory genes in Glossina austeni, G. brevipalpis, G. f. fuscipes, G. pallidipes, respectively, relative to 127 reported in G. m. morsitans. Our results show that tsetse fly genomes have fewer chemosensory genes when compared to other dipterans such as Musca domestica (n>393), Drosophila melanogaster (n = 246) and Anopheles gambiae (n>247). We also found that Glossina chemosensory genes are dispersed across distantly located scaffolds in their respective genomes, in contrast to other insects like D. melanogaster whose genes occur in clusters. Further, Glossina appears to be devoid of sugar receptors and to have expanded CO2 associated receptors, potentially reflecting Glossina's obligate hematophagy and the need to detect hosts that may be out of sight. We also identified, in all species, homologs of Ir84a; a Drosophila-specific ionotropic receptor that promotes male courtship suggesting that this is a conserved trait in tsetse flies. Notably, our selection analysis revealed that a total of four gene loci (Gr21a, GluRIIA, Gr28b, and Obp83a) were under positive selection, which confers fitness advantage to species. These findings provide a platform for studies to further define the language of communication of tsetse with their environment, and influence development of novel approaches for control. © 2016 Macharia et al. Source

Discover hidden collaborations