Woburn, MA, United States
Woburn, MA, United States
SEARCH FILTERS
Time filter
Source Type

Grant
Agency: NSF | Branch: Standard Grant | Program: | Phase: SMALL BUSINESS PHASE I | Award Amount: 150.00K | Year: 2013

This Small Business Innovative Research Phase I project is aimed at demonstrating that acyl glycinate surfactant can be produced by a novel bacterial fermentation route. The objective of this project is to construct a bacterial strain that produces acyl glycinate, and to provide a sample of that surfactant for commercial evaluation. A successful outcome will demonstrate that acyl glycine can be produced by fermentation. Surfactants are the bubbly components of cleaning products that give them their cleansing power. Surfactants are currently manufactured from petroleum or from seed oils, such as palm oil. The use of those raw materials increases greenhouse gas pollution and also leads to deforestation of rainforests. Retailers are demanding greener products, and regulatory agencies are demanding new minimally toxic chemicals. The demand for greener chemicals creates an opportunity to replace current surfactants with greener alternatives.

The broader/commercial impact of the proposed innovation would be commercialization of the acyl glycinate surfactant. Additional benefits to society are that chemicals produced using this technology will be manufactured using domestically grown renewable raw materials, which do not compete with food sources. Furthermore, the energy required to produce these chemicals is low since the fermentation reaction is performed near ambient temperature. The chemicals are inherently safer than traditional chemicals because toxic solvents are not used, and the surfactants are biodegradable and do not contribute to increased greenhouse gas accumulation. Successful completion of the project will generate significant new scientific and technical information on new routes to making such surfactants.


Grant
Agency: NSF | Branch: Standard Grant | Program: | Phase: SMALL BUSINESS PHASE II | Award Amount: 942.00K | Year: 2014

This Small Business Innovation Research Phase II project is aimed at optimizing production of a bio-surfactant in preparation for commercial launch of the product. During Phase I, the company developed an engineered microorganism that synthesizes the surfactant, and a key customer confirmed the identity and purity of a sample of the surfactant. During Phase II, synthetic biology methods will be used to increase the efficiency of the microorganism producing the surfactant. In addition, multiple samples of purified surfactant will be shipped to customers for evaluation. Customer feedback will identify any product features that require modification and will result in development of a detailed product specification, which will include metrics such as: purity, color, acceptable variation in composition and molecular weight, etc. The objectives of this Phase II project are to optimize surfactant characteristics and microbial production efficiency so that the surfactant can be profitably manufactured and sold for use in consumer products formulations.


The broader impact/commercial potential of this project is that it should enable the company to demonstrate that synthetic biology methods can be used to increase the efficiency of production of a bio-surfactant so the surfactant can be sold as a commercial product. Progress toward that goal should enable the company to attract a partner, for example a large chemical company, who will agree to collaborate on commercialization of the bio-surfactant. If the bio-surfactant can be made and sold profitably, the company will be positioned to fund future research and development aimed at commercial launch of additional bio-surfactants. Benefits to society are that chemicals produced using this technology will be manufactured using domestically grown renewable raw materials, which do not compete with food. Furthermore, the energy required to produce these chemicals is low since the fermentation reaction is performed near ambient temperature. The chemicals are inherently safer than traditional chemicals because toxic solvents are not used, and the surfactants are biodegradable and do not contribute to increased greenhouse gas accumulation. These bio-surfactants will initially be used in personal care products, such as body washes and shampoos. However, the surfactant market is large and diverse, creating an opportunity for use of bio-surfactants in products as varied as laundry detergent, paints and coatings, and floatation-agents used in the mining industry to purify valuable minerals.


Grant
Agency: National Science Foundation | Branch: | Program: SBIR | Phase: Phase II | Award Amount: 750.00K | Year: 2014

This Small Business Innovation Research Phase II project is aimed at optimizing production of a bio-surfactant in preparation for commercial launch of the product. During Phase I, the company developed an engineered microorganism that synthesizes the surfactant, and a key customer confirmed the identity and purity of a sample of the surfactant. During Phase II, synthetic biology methods will be used to increase the efficiency of the microorganism producing the surfactant. In addition, multiple samples of purified surfactant will be shipped to customers for evaluation. Customer feedback will identify any product features that require modification and will result in development of a detailed product specification, which will include metrics such as: purity, color, acceptable variation in composition and molecular weight, etc. The objectives of this Phase II project are to optimize surfactant characteristics and microbial production efficiency so that the surfactant can be profitably manufactured and sold for use in consumer products formulations. The broader impact/commercial potential of this project is that it should enable the company to demonstrate that synthetic biology methods can be used to increase the efficiency of production of a bio-surfactant so the surfactant can be sold as a commercial product. Progress toward that goal should enable the company to attract a partner, for example a large chemical company, who will agree to collaborate on commercialization of the bio-surfactant. If the bio-surfactant can be made and sold profitably, the company will be positioned to fund future research and development aimed at commercial launch of additional bio-surfactants. Benefits to society are that chemicals produced using this technology will be manufactured using domestically grown renewable raw materials, which do not compete with food. Furthermore, the energy required to produce these chemicals is low since the fermentation reaction is performed near ambient temperature. The chemicals are inherently safer than traditional chemicals because toxic solvents are not used, and the surfactants are biodegradable and do not contribute to increased greenhouse gas accumulation. These bio-surfactants will initially be used in personal care products, such as body washes and shampoos. However, the surfactant market is large and diverse, creating an opportunity for use of bio-surfactants in products as varied as laundry detergent, paints and coatings, and floatation-agents used in the mining industry to purify valuable minerals.


Grant
Agency: National Science Foundation | Branch: | Program: SBIR | Phase: Phase I | Award Amount: 150.00K | Year: 2013

This Small Business Innovative Research Phase I project is aimed at demonstrating that acyl glycinate surfactant can be produced by a novel bacterial fermentation route. The objective of this project is to construct a bacterial strain that produces acyl glycinate, and to provide a sample of that surfactant for commercial evaluation. A successful outcome will demonstrate that acyl glycine can be produced by fermentation. Surfactants are the bubbly components of cleaning products that give them their cleansing power. Surfactants are currently manufactured from petroleum or from seed oils, such as palm oil. The use of those raw materials increases greenhouse gas pollution and also leads to deforestation of rainforests. Retailers are demanding greener products, and regulatory agencies are demanding new minimally toxic chemicals. The demand for greener chemicals creates an opportunity to replace current surfactants with greener alternatives. The broader/commercial impact of the proposed innovation would be commercialization of the acyl glycinate surfactant. Additional benefits to society are that chemicals produced using this technology will be manufactured using domestically grown renewable raw materials, which do not compete with food sources. Furthermore, the energy required to produce these chemicals is low since the fermentation reaction is performed near ambient temperature. The chemicals are inherently safer than traditional chemicals because toxic solvents are not used, and the surfactants are biodegradable and do not contribute to increased greenhouse gas accumulation. Successful completion of the project will generate significant new scientific and technical information on new routes to making such surfactants.


Grant
Agency: NSF | Branch: Standard Grant | Program: | Phase: SMALL BUSINESS PHASE I | Award Amount: 225.00K | Year: 2016

The broader impact/commercial potential of this Small Business Innovation Research Phase I project would be commercialization of a surfactant (acyl ethanolamine) made from renewable raw materials, which do not compete with food sources. Surfactants are the bubbly components of cleaning products that give them their cleansing power. Surfactants are manufactured from petroleum or from seed oils, such as palm oil. The use of those raw materials increases greenhouse gas pollution and contributes to deforestation of rainforests. Society is demanding environmentally sustainable (greener) products with reduction or removal of toxicity. The demand for greener chemicals creates an opportunity to replace todays surfactants with greener alternatives. The surfactant chemicals produced in this project are inherently safer than traditional chemicals because toxic solvents are not used, and the surfactants are biodegradable and produced from renewable raw materials such as sugars, and as a result do not contribute to increased greenhouse gas accumulation. The acyl ethanolamine surfactant is designed to replace current commercial surfactants, which are contaminated, during the current manufacturing process, with the carcinogen 1,4 dioxane. The surfactant produced by the effort described here will not contain any 1,4 dioxane. Successful completion of this project will demonstrate a new technology for the production of nonionic surfactants. This is significant since nonionic surfactants represent about 40% of the $30 billion surfactant market.

The technical objective of this Phase I research project is to construct a Bacillus strain that produces an acyl amino alcohol surfactant, namely, acyl ethanolamine. Certain naturally existing peptide synthetase enzymes catalyze the linkage of particular amino acids to other particular amino acids. In addition, certain peptide synthetase enzymes catalyze the linkage of particular fatty acids to particular amino acids. Past work demonstrated that this system can be engineered to catalyze the creation of unique molecules, such as acyl glycinate (fatty acid linked to glycine). During enzymatic synthesis of acyl glycinate, glycine is covalently attached to the synthetase via a thioester bond. Product release is catalyzed by a thioesterse domain. Release by a thioesterase results in production of fatty acid linked to the amino acid glycine. Certain naturally occurring peptide synthetase enzymes use reductase domains to release products. We hypothesize that release of acyl glycine via a reductase domain will result in the synthesis of acyl ethanolamine, rather than acyl glycine. The objective of this Phase I project is to create a chimeric peptide synthetase enzyme that converts acyl glycine into acyl ethanolamine during the process of release of the product from the enzyme.


Grant
Agency: National Science Foundation | Branch: | Program: SBIR | Phase: Phase I | Award Amount: 225.00K | Year: 2016

The broader impact/commercial potential of this Small Business Innovation Research Phase I project would be commercialization of a surfactant (acyl ethanolamine) made from renewable raw materials, which do not compete with food sources. Surfactants are the bubbly components of cleaning products that give them their cleansing power. Surfactants are manufactured from petroleum or from seed oils, such as palm oil. The use of those raw materials increases greenhouse gas pollution and contributes to deforestation of rainforests. Society is demanding environmentally sustainable (greener) products with reduction or removal of toxicity. The demand for greener chemicals creates an opportunity to replace today's surfactants with greener alternatives. The surfactant chemicals produced in this project are inherently safer than traditional chemicals because toxic solvents are not used, and the surfactants are biodegradable and produced from renewable raw materials such as sugars, and as a result do not contribute to increased greenhouse gas accumulation. The acyl ethanolamine surfactant is designed to replace current commercial surfactants, which are contaminated, during the current manufacturing process, with the carcinogen 1,4 dioxane. The surfactant produced by the effort described here will not contain any 1,4 dioxane. Successful completion of this project will demonstrate a new technology for the production of nonionic surfactants. This is significant since nonionic surfactants represent about 40% of the $30 billion surfactant market. The technical objective of this Phase I research project is to construct a Bacillus strain that produces an acyl amino alcohol surfactant, namely, acyl ethanolamine. Certain naturally existing peptide synthetase enzymes catalyze the linkage of particular amino acids to other particular amino acids. In addition, certain peptide synthetase enzymes catalyze the linkage of particular fatty acids to particular amino acids. Past work demonstrated that this system can be engineered to catalyze the creation of unique molecules, such as acyl glycinate (fatty acid linked to glycine). During enzymatic synthesis of acyl glycinate, glycine is covalently attached to the synthetase via a thioester bond. Product release is catalyzed by a thioesterse domain. Release by a thioesterase results in production of fatty acid linked to the amino acid glycine. Certain naturally occurring peptide synthetase enzymes use reductase domains to release products. We hypothesize that release of acyl glycine via a reductase domain will result in the synthesis of acyl ethanolamine, rather than acyl glycine. The objective of this Phase I project is to create a chimeric peptide synthetase enzyme that converts acyl glycine into acyl ethanolamine during the process of release of the product from the enzyme.


Patent
Modular Genetics, Inc. | Date: 2010-02-19

Antimicrobial compositions and methods of using the compositions are described herein. The compositions include an antibacterial acyl amino acid. In some embodiments, the acyl amino acid is a fatty acylated glutamate. The methods herein include methods of using acyl amino acids for treating and preventing bacterial infections.


Patent
Modular Genetics, Inc. | Date: 2016-09-30

Engineered polypeptides useful in synthesizing acyl amino acids are provided. Also provided are methods of making acyl amino acids using engineered polypeptides. In certain embodiments, an acyl amino acid produced using compositions and/or methods of the present invention comprises cocoyl glutamate.


Patent
Modular Genetics, Inc. | Date: 2010-06-24

The present invention provides, among other things, engineered microorganisms and methods that allow efficient conversion of soy carbohydrates to industrial chemicals by fermentation. In some embodiments, the invention provides microbial cells engineered to have increased efficiency in utilizing a soy carbon source (e.g., soy molasses, soy meal, and/or soy hulls) as compared to a parent cell. In some embodiments, microbial cells are engineered to have altered (e.g., increased) expression or activity of one or more carbohydrate modifying enzymes (e.g., glycosidases). In some embodiments, microbial cells are engineered to have altered localization of carbohydrate modifying enzymes (e.g., glycosidases). In some embodiments, engineered microbial cells provided herein are used to produce industrial chemicals (e.g., surfactin) using soy components as primary or sole carbon sources.


Patent
Modular Genetics, Inc. | Date: 2014-03-14

Engineered polypeptides useful in synthesizing acyl amino acids are provided. Also provided are methods of making acyl amino acids using engineered polypeptides.

Loading Modular Genetics, Inc. collaborators
Loading Modular Genetics, Inc. collaborators