MOA Institute of Crop Science

Beijing, China

MOA Institute of Crop Science

Beijing, China
SEARCH FILTERS
Time filter
Source Type

Breen J.,Murdoch University | Wicker T.,University of Swaziland | Kong X.,MOA Institute of Crop science | Zhang J.,MOA Institute of Crop science | And 5 more authors.
BMC Plant Biology | Year: 2010

Background: The complexity of the wheat genome has resulted from waves of retrotransposable element insertions. Gene deletions and disruptions generated by the fast replacement of repetitive elements in wheat have resulted in disruption of colinearity at a micro (sub-megabase) level among the cereals. In view of genomic changes that are possible within a given time span, conservation of genes between species tends to imply an important functional or regional constraint that does not permit a change in genomic structure. The ctg1034 contig completed in this paper was initially studied because it was assigned to the Sr2 resistance locus region, but detailed mapping studies subsequently assigned it to the long arm of 3B and revealed its unusual features.Results: BAC shotgun sequencing of the hexaploid wheat (Triticum aestivum cv. Chinese Spring) genome has been used to assemble a group of 15 wheat BACs from the chromosome 3B physical map FPC contig ctg1034 into a 783,553 bp genomic sequence. This ctg1034 sequence was annotated for biological features such as genes and transposable elements. A three-gene island was identified among >80% repetitive DNA sequence. Using bioinformatics analysis there were no observable similarity in their gene functions. The ctg1034 gene island also displayed complete conservation of gene order and orientation with syntenic gene islands found in publicly available genome sequences of Brachypodium distachyon, Oryza sativa, Sorghum bicolor and Zea mays, even though the intergenic space and introns were divergent.Conclusion: We propose that ctg1034 is located within the heterochromatic C-band region of deletion bin 3BL7 based on the identification of heterochromatic tandem repeats and presence of significant matches to chromodomain-containing gypsy LTR retrotransposable elements. We also speculate that this location, among other highly repetitive sequences, may account for the relative stability in gene order and orientation within the gene island.Sequence data from this article have been deposited with the GenBank Data Libraries under accession no. GQ422824. © 2010 Breen et al; licensee BioMed Central Ltd.


Breen J.,Murdoch University | Li D.,Murdoch University | Dunn D.S.,Murdoch University | Bekes F.,CSIRO | And 8 more authors.
BMC Plant Biology | Year: 2010

Background: Expansins form a large multi-gene family found in wheat and other cereal genomes that are involved in the expansion of cell walls as a tissue grows. The expansin family can be divided up into two main groups, namely, alpha-expansin (EXPA) and beta-expansin proteins (EXPB), with the EXPB group being of particular interest as group 1-pollen allergens.Results: In this study, three beta-expansin genes were identified and characterized from a newly sequenced region of the Triticum aestivum cv. Chinese Spring chromosome 3B physical map at the Sr2 locus (FPC contig ctg11). The analysis of a 357 kb sub-sequence of FPC contig ctg11 identified one beta-expansin genes to be TaEXPB11, originally identified as a cDNA from the wheat cv Wyuna. Through the analysis of intron sequences of the three wheat cv. Chinese Spring genes, we propose that two of these beta-expansin genes are duplications of the TaEXPB11 gene. Comparative sequence analysis with two other wheat cultivars (cv. Westonia and cv. Hope) and a Triticum aestivum var. spelta line validated the identification of the Chinese Spring variant of TaEXPB11. The expression in maternal and grain tissues was confirmed by examining EST databases and carrying out RT-PCR experiments. Detailed examination of the position of TaEXPB11 relative to the locus encoding Sr2 disease resistance ruled out the possibility of this gene directly contributing to the resistance phenotype.Conclusions: Through 3-D structural protein comparisons with Zea mays EXPB1, we proposed that variations within the coding sequence of TaEXPB11 in wheats may produce a functional change within features such as domain 1 related to possible involvement in cell wall structure and domain 2 defining the pollen allergen domain and binding to IgE protein. The variation established in this gene suggests it is a clearly identifiable member of a gene family and reflects the dynamic features of the wheat genome as it adapted to a range of different environments and uses.Accession Numbers: ctg11 =FN564426. Survey sequences of TaEXPB11ws and TsEXPB11 are provided request. © 2010 Breen et al; licensee BioMed Central Ltd.


Zhang J.,MOA Institute of Crop Science | Jia J.,MOA Institute of Crop Science | Breen J.,Murdoch University | Kong X.,MOA Institute of Crop Science | Kong X.,Chinese Academy of Agricultural Sciences
Functional and Integrative Genomics | Year: 2011

The assembly of a 1.3-Mb size region of the wheat genome has provided the opportunity to study a recent nuclear mitochondrial DNA insertion (NUMT). In the present study, we have studied two bacterial artificial chromosomes (BACs) and characterized a 52-kb NUMT segment from the tetraploid and hexaploid wheat BAC libraries. The conserved orthologous NUMT regions from tetraploid and hexaploid wheat Langdon and Chinese Spring shared identical gene haplotypes even though mutations (insertions, deletions, and substitutions) had occurred. The 52-kb NUMT was present in hexaploid variety Chinese Spring, but absent in variety Hope, by sequence comparison of their corresponding region. Amplifying the NUMT junctions using a set of the wheat materials including diploid, tetraploid, and hexaploid lines showed that none of the diploid wheat carried the region and only some tetraploid and hexaploid wheat were positive for the NUMT. Age estimation of the NUMT displayed the mean ages of Langdon NUMT and Chinese Spring NUMT to be 378,000 and 416,000 years ago, respectively. Reverse transcription PCR and sequencing of the nad7 gene showed 28 C → U RNA editing sites and four partial editing sites, as expected for mitochondrial DNA expression. Specific SNPs discriminated between cDNA from the nucleus and the mitochondria and suggested that the nuclear copy was not expressed. The mitochondrial DNA studied was inserted into the genome quite recently within the wheat lineage and gave rise to the non-coding nuclear nad7 gene. The NUMT segment could be lost and acquired frequently during the wheat evolution. © Springer-Verlag 2011.

Loading MOA Institute of Crop Science collaborators
Loading MOA Institute of Crop Science collaborators