Time filter

Source Type

Leshinsky-Silver E.,Wolfson Medical Center | Leshinsky-Silver E.,Mitochondrial Disease Center | Leshinsky-Silver E.,Tel Aviv University | Malinger G.,Tel Aviv University | And 18 more authors.
European Journal of Human Genetics | Year: 2011

Aicardi-Goutiéres syndrome (AGS) is a genetic neurodegenerative disorder with clinical symptoms mimicking a congenital viral infection. Five causative genes have been described: three prime repair exonuclease1 (TREX1), ribonucleases H2A, B and C, and most recently SAM domain and HD domain 1 (SAMHD1). We performed a detailed clinical and molecular characterization of a family with autosomal recessive neurodegenerative disorder showing white matter destruction and calcifications, presenting in utero and associated with multiple mtDNA deletions. A muscle biopsy was normal and did not show any evidence of respiratory chain dysfunction. Southern blot analysis of tissue from a living child and affected fetuses demonstrated multiple mtDNA deletions. Molecular analysis of genes involved in mtDNA synthesis and maintenance (POLGα, POLGΒ, Twinkle, ANT1, TK2, SUCLA1 and DGOUK) revealed normal sequences. Sequencing of TREX1 and ribonucleases H2A, B and C failed to reveal any mutations. Whole-genome homozygosity mapping revealed a candidate region containing the SAMHD1 gene. Sequencing of the gene in the affected child and two affected fetuses revealed a large deletion (9 kb), spanning the promoter, exon1 and intron 1. The parents were found to be heterozygous for this deletion. The identification of a homozygous large deletion in the SAMHD1 gene causing atypical AGS with multiple mtDNA deletions may add information regarding the involvement of mitochondria in self-activation of innate immunity by cell intrinsic components. © 2011 Macmillan Publishers Limited All rights reserved.

Leshinsky-Silver E.,Wolfson Medical Center | Leshinsky-Silver E.,Mitochondrial Disease Center | Leshinsky-Silver E.,Tel Aviv University | Shuvalov R.,Mitochondrial Disease Center | And 8 more authors.
Journal of Child Neurology | Year: 2011

An increasing number of reports describe mutations in mitochondrial DNA coding regions, especially in mitochondrial DNA- encoded nicotinamide adenine dinucleotide dehydrogenase subunit genes of the respiratory chain complex I, as causing early-onset Leigh syndrome. The authors report the molecular findings in a 24-year-old patient with juvenile-onset Leigh syndrome presenting with optic atrophy, ataxia dystonia, and epilepsy. A brain magnetic resonance imaging revealed bilateral basal ganglia and thalamic hypointensities, and a magnetic resonance spectroscopy revealed an increased lactate peak. The authors identified a T14487C change causing M63V substitution in the mitochondrial ND6 gene. The mutation was heteroplasmic in muscle and blood samples, with different mutation loads, and was absent in the patient's mother's urine and blood samples. They suggest that the T14487C mtDNA mutation should be analyzed in Leigh syndrome, presenting with optic atrophy, ataxia, dystonia, and epilepsy, regardless of age. © 2011 The Author(s).

Leshinsky-Silver E.,Wolfson Medical Center | Leshinsky-Silver E.,Mitochondrial Disease Center | Lev D.,Mitochondrial Disease Center | Lev D.,Institute of Medical Genetics | And 8 more authors.
Molecular Genetics and Metabolism | Year: 2010

Leigh syndrome can be caused by defects in both nuclear and mitochondrial genes involved in energy metabolism. Recently, an increasing number of mutations in mitochondrial DNA encoding regions, especially in NADH dehydrogenase (respiratory chain complex I) subunits, have been reported as causative of early onset Leigh syndrome. We describe a patient whose fetal brain ultrasound demonstrated periventricular pseudocyst suggestive of a possible mitochondrial disorder who presented postnatally with Leigh syndrome. A muscle biopsy demonstrated a partial decrease in complex I and pyruvate dehydrogenase (PDH-E1α) activity. Sequencing of the PDH-E1 alpha gene did not reveal any mutation. Sequencing of the mtDNA revealed a novel heteroplasmic G10254A (D66N) mutation in the ND3 gene. This change results in a substitution of aspartic acid to asparagine in a highly conserved domain of the ND3 subunit. The mutation could not be detected in the mother's blood or urine sediment. Blue native gel electrophoresis of muscle mitochondria revealed a normal size, albeit a decreased level of complex I. The G10254A substitution in the mtDNA-ND3 gene is another cause of maternally inherited Leigh syndrome. This case demonstrates that periventricular pseudocysts may be the initial in utero presentation in patients with mitochondrial disorders. We emphasize the importance of screening the mtDNA in pediatric patients as the first step in molecular diagnosis of Leigh syndrome. © 2010 Elsevier Inc. All rights reserved.

Loading Mitochondrial Disease Center collaborators
Loading Mitochondrial Disease Center collaborators