Cambridge, MA, United States
Cambridge, MA, United States

Time filter

Source Type

News Article | February 15, 2017
Site: news.mit.edu

From mimicking the natural characteristics of photosynthesis in human-made solar energy systems, to modeling plasma behavior in fusion reactor designs, some of MIT's newest faculty bring a wide array of energy expertise to the Institute. The latest issue of the MIT Energy Initiative (MITEI) magazine, Energy Futures, gives an in-depth look at what drives four of them. Gabriela Schlau-Cohen: What photovoltaics can learn from photosynthesis Unlike human-made electric grids, the natural world’s energy-harvesting systems never experience blackouts. Gabriela Schlau-Cohen, assistant professor of chemistry at MIT, is trying to learn from this natural talent for energy-making so she can change our energy systems for the better. For Schlau-Cohen, this means starting with plants. Plants are the ultimate energy-users: The average global rate of photosynthesis is 130 terawatts — a level of energy-capture more than six times worldwide energy consumption. “Leaves absorb light throughout the visible spectrum, and they basically funnel all of that energy to a dedicated protein where electricity is generated,” Schlau-Cohen says. Plants’ ability to convert sunlight into electricity is two- to three-fold higher than that of a typical solar photovoltaic (PV) system. With this in mind, Schlau-Cohen and her colleagues set out to unlock plants’ energy secrets. They began by studying the basic physics of plants, with the eventual goal of mimicking these natural characteristics in a human-made system. Through the MIT Center for Excitonics, Schlau-Cohen and her team are able to experiment with cutting-edge technology for bio-inspired artificial light-harvesting systems. One of the most important takeaways from her study of plants isn’t the discovery of a single plant structure or chemical that makes natural energy processing so efficient, Schlau-Cohen says. It’s the economic choices represented by the operation of the system as a whole. “I think that the big picture here is that nature has solved the intermittency problem,” says Schlau-Cohen. One of the major challenges for renewable energy is that two of its key sources — wind and sunlight — are intermittent. That variability proves a challenge for those who are trying to develop technology for harvesting energy from those sources. Schlau-Cohen gives the example of building solar PV systems. “Build a system to handle just the maximum amount of sunlight, and it’s going to sit idle for most of the time,” says Schlau-Cohen. “But build it to work best at the lowest level of sunlight, and in high-sun situations much of the light is unused.” To deal with this challenge, the energy-harvesting pathways in plants are designed to strike a balance between being hardy enough to operate in full sunlight and finely tuned enough to make the most of low sunlight conditions. Increasing the amount of time the system can be active has economic advantages as well. Natural systems optimize by making sure their most energy-expensive machinery is always in use so that they can get the most out of it. “Through complicated feedback loops implemented in its molecular machinery, the system responds to changes in solar intensity,” says Schlau-Cohen. This responsiveness addresses the intermittency problem, while also ensuring that the plant structures that take the most energy to develop are used to their full potential. Based on their new understanding of plants’ energy-harvesting pathways, Schlau-Cohen and her team are finding ways to control for different variables — creating biomass, for example, rather than protecting the system against too much sunlight. “If we rewire those pathways for optimizing biomass, we can get a 15 percent increase in biomass, or even 30 percent under some conditions,” she says. As Schlau-Cohen tackles these issues at the forefront of energy knowledge, she finds a source of inspiration in her research community. When she made the decision to come to MIT, the students were a particular draw. “I think MIT students are the best of the best, not just in terms of their smarts, but in terms of their excitement about science,” she says. “That was something I could not turn down, because I felt like they would make me the best scientist I could be.” The students have not disappointed, providing both inspiration and fun — Schlau-Cohen’s very own source of renewable energy. Rafael Jaramillo studied physics as an undergrad and graduate student, but at MIT — first as a postdoc and now as an assistant professor — his work has taken him in a slightly different direction. He’s now developing new materials and teaching materials science and engineering. During his career in engineering, one important lesson he’s learned is how to see new pathways for scientific discoveries that transcend, and often connect, research fields. “I try to find where the connections are between the scope of science, what you’re capable of at a university, and what matters for energy applications such as solar photovoltaics,” Jaramillo says. As a postdoc, he worked with Tonio Buonassisi, an MIT professor in mechanical engineering who is an expert in solar photovoltaics. “I really appreciate the real-world education I got in Tonio’s group,” Jaramillo says. “It taught me how to be opportunistic — how to define projects where all of those factors come together, and you can find a way to help.” Though photovoltaics isn’t Jaramillo’s only focus now, he’s carried this skill for finding opportunities for discovery throughout his studies and his early professorship. On the energy front, he now specializes in the study of semi­conductors and their use as new materials for improved energy devices, from batteries and microelectronics to photovoltaic systems. Jaramillo knows that his interest in semiconductors is something of a departure from his training in fundamental physics. “Physics has in a way moved on,” he says. “It’s been several decades since departments have really taught semiconductors.” This well-studied class of materials, however, is seeing the dawn of a new era. In the low-carbon energy arena, scientists are constantly experimenting with new materials that will improve the economics and energy footprint of existing technologies, permitting critically needed increases in manufacturing along with cost reductions from economies of scale. Different materials will address different scaling challenges in areas ranging from solar PV to computing to sustainable global development, but the fact that new materials are needed remains a constant, Jaramillo says. “We’re butting up against the limitations of the tried and true materials. That’s exciting because it means you get to dive in and think about new materials. And they’re all semiconductors.” As Jaramillo works to develop new materials, he is also seeking new ways to inspire students to study one of the most classic (and deceptively basic) topics in science: thermo­dynamics, the subject of an introductory course he teaches to undergraduates. “Thermodynamics is almost the core of materials science,” he says. “It allows you to make predictions about how to process materials and get desired products.” This importance, though, is sometimes lost in traditional ways of teaching the subject. “There are canonical examples, like the invention of steel and the invention of stainless steel, but I tend to focus more on microelectronics and semiconductors,” he says. “You can find great canonical examples of thermodynamics in action from not just 60, 70, 80 years back, but in the last 10 years, 20 years, and today. I like to reach for those.” According to Jaramillo, it all comes down to being open to new ways of looking at the world, and the applied sciences are a critical part of that. “I think a lot of the great, deep insights have come out of applied research throughout history,” he says. “Einstein came up with relativity by looking at train tables and asking very practical questions about how you synchronize train arrival and departure times across Europe. That sounds pretty boring in the wrong hands. So I think that use-inspired research and going in multiple directions from there is the most rewarding way to do science.” “Climate change, climate change, climate change.” Assistant Professor David Hsu in the Department of Urban Studies and Planning has no hesitation naming what he considers the most significant challenge facing urban planners today. Threats to cities range from sea-level rise to extreme weather events. But for Hsu, the immediate challenge is to address climate change itself by finding ways to make cities and their inhabitants consume resources like energy and water more efficiently. Tackling particular sectors can affect climate on a global scale. Hsu says, “If you take just U.S. buildings as a single country, it would be the third-biggest carbon emitter on the planet after the rest of the U.S. economy and China.” Accordingly, a number of Hsu’s current projects involve how to make built environments, both urban and rural, more sustainable. He’s collaborating with fellow researchers at MIT and elsewhere on a wide range of projects including smart infrastructure embedded in physical systems, regulatory policies that promote renewables, and deployment of experimental microgrids in India. One of the most effective ways to cut down on building energy use, though, is to target the behavior of those inhabiting the buildings. In order to understand humans’ energy behavior and how to change it, researchers need data. One of Hsu’s new projects involves integrating programs, policies, and technologies to enable the moni­toring of energy flows between buildings and the grid. This setup would enable greater grid stability — a prospect that Hsu and his fellow researchers hope will attract the attention of today’s utilities. That information would also enable researchers to map out energy distribution and consumption, which in turn would help them understand better how to shape that consumption to minimize carbon emissions and energy use, he says. Sometimes, one of the most direct ways to encourage people to consume less is simply to share such data with them. Once consumers see how they’re using energy, they can make informed decisions about where they could make changes. Hsu took a self-described “long, tortuous educational path,” one that he laughingly tells students never to replicate. This path led from under­graduate and master’s degrees in physics to a PhD in urban planning and design. His post-graduation jobs ranged from green-building engineering to real estate finance, and eventually brought him to city government. His first job in city planning was in New York City working to rebuild Lower Manhattan after Sept. 11, 2001. Since then, Hsu has worked in cities from Philadelphia to Seattle to London. This rich, varied experience with city living has led Hsu to his current focus on human interaction with infrastructure, as well as the challenges involved in adapting infrastructure to emerging climate constraints. Last spring he taught a course called Theories of Infrastructure, which compared alternative theories of how people interact with technological systems. Hsu enjoyed the students as much as the course content. “I had a diverse bunch of students who were really into the topic,” he says. “They were curious, interested, and we had great debates.” Hsu’s membership on the MIT Energy Initiative’s Energy Education Task Force demonstrates his commitment to training leaders in all aspects of energy. But he especially focuses on preparing the urban planners of tomorrow to grapple with humans’ relationship with energy — a remarkably varied one, depending on where you live. “In many places, people have never had cheap, safe, and reliable electricity. One or two out of the three, maybe, but never all three,” Hsu says. Providing all three while also encouraging people worldwide to build sustainable ways of life is — in Hsu’s view — one of the great challenges facing city planners today. Nuno Loureiro: In search of a more perfect fusion reactor Nuno Loureiro, an assistant professor of nuclear science and engineering at MIT, is particularly attuned to the inner movement of complex systems. Much of his research on plasma theory and modeling concerns turbulence and magnetic reconnection, two phenomena that disrupt the operation of nuclear fusion reactors. To Loureiro, MIT itself represents a fascinating system — one he’s been exploring since he joined the faculty in January 2016. “It’s great to be in an environment where the system will respond at the level you want,” he says. “Sometimes it’s hard to find an institution where there is a perfect resonance between what you want, the rhythm you want for your own research, and the institution itself. And MIT does this. MIT will basically respond to whatever you throw at it.” What drew Loureiro to plasma physics, he says, was energy. “If one is not naïve about today’s world and today’s society, one has to understand that there is an energy problem. And if you’re a physicist, you have the tools to try and do something about it.” Fusion reactors, with their potential to provide continuous, greenhouse gas emissions-free energy, are one answer to the problem. A working fusion reactor gleans its energy from the organized movement of plasma, a hot ionized gas, along tracks formed by magnetic bands within the reactor, similar to the way the solar plasma on the surface of the sun moves along paths dictated by the sun’s magnetic field. Loureiro, who specializes in plasma as it relates to both reactor physics and astrophysics, knows the details of this parallel well. Sometimes the magnetic field lines on the sun’s surface rearrange themselves, and the resulting “violent phenomenon” of energy release is a solar flare, Loureiro says. Something similar can take place within fusion reactors. A reactor’s plasma occasionally will spontaneously reconfigure the prescribed magnetic field, inducing instabilities that may abruptly terminate the experiment. In addition, fusion reactor plasmas tend to be in a turbulent state. Both effects hinder the reactor’s ability to operate. Loureiro uses theoretical calculations and supercomputer modeling to try to figure out what causes those phenomena and what can be done to avoid them in future experiments. He says, “When someone proposes a new concept for a fusion reactor, or when one is planning new experiments on existing machines, one of the things you have to think about is, how will the plasma in it behave?” His simulations use several theoretical approaches to tackle such questions. He notes that his simulations are not meant to be prescriptive, which would require a high level of complexity and realism. “My approach is at a more fundamental level,” he says. “I take very complex phenomena and try to understand them by reducing them to the simplest possible system that still captures the essential physics of those phenomena.” Loureiro looks forward to continuing to involve more students in his research. In his lab and in the classroom, he already works with both undergraduate and graduate physics students. He is currently teaching a numerical methods class for graduate students in nuclear science and engineering, and an undergraduate introductory seminar on plasma physics and fusion energy. “One of the things that has impressed me most about MIT is how talented the students are,” Loureiro says. “People told me, ‘Oh, the students are just amazing.’ But I don’t think I expected just how amazing they are.” He feels the same esteem for his fellow researchers. “It’s inspirational to be on the same campus as people in completely different areas from mine who are world leaders in their fields,” he says. “That’s something that is unique to MIT and that I find incredibly motivating.” He’s also inspired by the vibrant environment of the Plasma Science and Fusion Center (PSFC). “I feel that some of the most interesting ideas in fusion right now are being explored at the PSFC,” he says. “It’s great to be an active part of that excitement.” Hundreds of MIT faculty members collaborate with MITEI. To learn more about their work, visit MITEI’s research page.


News Article | February 15, 2017
Site: news.mit.edu

MIT alumnus Josh Adler MBA ’13 is a matchmaker. In the mid-1990s, he launched and sold Amour.com, one of the first online matchmaking websites, which is still operating today. Two decades later, Adler is still matchmaking. But now, through his website Sourcewater, he’s helping people in the oil and gas industry connect online to make finding, transporting, and recycling water more cost effective. In so doing, the website is helping create new uses for wastewater, thus conserving fresh water and reducing wastewater disposal. With oil and gas drilling, water is always on the move — and it’s pricey. Hydraulic fracturing (fracking), for instance, requires millions of gallons of fresh water to be shipped daily to drilling sites, and it produces millions more gallons of wastewater that are sent to treatment facilities or disposal wells. However, this water-management supply chain still relies heavily on word-of-mouth and phone calls to find and conduct business. “The whole process is managed by one guy calling another guy and asking him to come by and bring his truck to haul off water,” Adler says. “The whole system is stuck in the 1950s.” Sourcewater, on the other hand, provides users with a list and interactive map of all available fresh and wastewater, treatment facilities, shippers, and other water-based services. Users can search based on price, location, water quality, and other parameters to reduce the distance, cost, and environmental impact of hauling water. A fracking firm, for instance, may list its wastewater with about 30 characteristics, such as location, quality, volume produced per day, and mineral or chemical properties. Then, they’ll list a price they’ll pay to have it hauled it away. Shippers and treatment facilities can bid on transporting and treating the water. Alternatively, a nearby gas-drilling firm may offer to take away the wastewater for its own operations. From all these offers, the firm can choose the deal that best fits its budget and schedule. Consider it “an Expedia for water management,” Adler says. Currently, the website has about 1.4 billion barrels of water listed online, primarily in the Marcellus Shale region of the United States —  including Pennsylvania, Ohio, and West Virginia. Among the dozens of companies and organizations using Sourcewater are Shell, Mountaineer Keystone, Pennsylvania General Energy, and Waste Management, Inc. Apart from making water management more cost effective, Sourcewater aims to promote wastewater as a commodity, championing its use over fresh water in drilling operations and decreasing the amount dumped in disposal wells — “which is the equivalent to a water landfill,” Adler says. Compared to fresh water, much more nonfresh water is available in the water supply chain, Adler says. The typical oil well, for instance, produces about 10 times as much wastewater as oil per day. That wastewater requires heavy treatment to be used for, say, irrigating edible crops. But it requires very little treatment for reuse in other oil and gas wells. “There’s a lot you can do with nonfresh water if you can find it and trade it,” he says. “By the time you get your flowback and produced water back, you are probably done with your well completions, but there may be someone nearby that is about to start operations who could use your water.” This can save operators money and transportation fuel, especially in the Marcellus Shale region, where fracking is prominent, but, in certain areas, disposal wells aren’t. In Pennsylvania, for instance, there are only 12 disposal wells, so some fracking operators must truck wastewater to Ohio, hundreds of miles away, for disposal. If a fracking firm can sell its wastewater to another firm nearby, at a price lower than the cost of freshwater, “Both sides come out well ahead,” Adler says. Ultimately, a real “conceptual breakthrough” of Sourcewater, Adler adds, is helping redefine water quality, in general, “as a continuum, instead of binary indicator … of fresh water or wastewater.” Water that’s 10 times the salinity of sea water, for instance, is considered wastewater in industry. But that water can still be used for fracking, which tolerates a wide range of water qualities, and, in fact, doesn’t require fresh water at all. “Using super-saline water for energy needs is a really useful thing,” Adler says. “Even wastewater has value.” In 2012, Adler came to the MIT Sloan School of Management as a Sloan Fellow, after working at his own real estate company in Washington for a decade. His mission was simple: innovation. “The only innovation in real estate in the past century was the elevator,” he jokes. “I wanted to start something new, something scalable.” Adler enrolled in Course 15.366 (Energy Ventures), where a lecture delivered by Francis O’Sullivan, the MIT Energy Initiative's director of research, focused on the water used and wasted for fracking. “I was blown away,” Adler says. Inspired, Adler began working with MIT students on various water-related projects, such as working on an Energy Ventures student team on a commercialization plan for nanoporous graphene desalination membranes, naming the planned company Moses Membranes. The team won the audience choice award and second place overall in the 2012 MIT $100K Pitch Contest. Then one day he had a “eureka moment” while talking with a PhD student about software that optimized water shipments coming to and from wells. “I said, ‘But how do they know where to get the water from?’ ‘Is there a marketplace for water?’ The answer was no,” Adler says. Establishing a marketplace where fresh and wastewater sources could connect made for “an ideal ‘online matchmaking’ operation,” Adler says. In 2013, Adler developed Sourcewater and, through connections from an MIT Sloan classmate, was able to pilot the software with Shell. Early company meetings were held in the MIT Sloan cafeteria, which is, apparently, quite common. “While there, I’d see at least a dozen of my Sloan classmates doing the same thing for their companies,” Adler says, laughing. Sourcewater also benefited from MIT mentors, professors, and classmates who offered advice on early-stage startups, as well as from networking opportunities via the MIT Industrial Liaison Program, which connects startups with industry. “There’s something about being in the MIT community that really fosters creativity and innovation,” he says. Eventually, Sourcewater set up shop in the Cambridge Innovation Center, in Cambridge, Massachusetts. Last month, the startup moved operations to Houston to get closer to the booming oil and gas industry in Texas. The next step for the startup is to gather public data on water sources to more fully populate its map without relying on customer input. The aim is to be a type of Google search platform for water-based resources. Additionally, Sourcewater is looking into developing an infrastructure for real-time tracking, measuring, and verification of water pickups and delivery using a smartphone app connected to sensors. “That’s something we’re now looking to build out, because we get asked for it so much,” Adler says. “There’s this huge ecosystem that’s untouched by the Internet or information technology, and there’s great opportunity there.”


News Article | February 15, 2017
Site: news.mit.edu

Chemical reactions that release oxygen in the presence of a catalyst, known as oxygen-evolution reactions, are a crucial part of chemical energy storage processes, including water splitting, electrochemical carbon dioxide reduction, and ammonia production. The kinetics of this type of reaction are generally slow, but compounds called metal oxides can have catalytic activities that vary over several orders of magnitude, with some exhibiting the highest such rates reported to date. The physical origins of these observed catalytic activities is not well-understood. Now, a team at MIT has shown that in some of these catalysts oxygen doesn’t come only from the water molecules surrounding the catalyst material; some of it comes from within the crystal lattice of the catalyst material itself. The new findings are being reported this week in the journal Nature Chemistry, in a paper by recent MIT graduate Binghong Han PhD ’16, postdoc Alexis Grimaud, Yang Shao-Horn, the W.M. Keck Professor of Energy, and six others. The research was aimed at studying how water molecules are split to generate oxygen molecules and what factors limit the reaction rate, Grimaud says. Increasing those reaction rates could lead to more efficient energy storage and retrieval, for example, so determining just where the bottlenecks may be in the reaction is an important step toward such improvements. The catalysts used to foster the reactions are typically metal oxides, and the team wanted “to be able to explain the activity of the sites [on the surface of the catalyst] that split the water,” Grimaud says. The question of whether some oxygen gets stored within the crystal structure of the catalyst and then contributes to the overall oxygen output has been debated before, but previous work had never been able to resolve the issue. Most researchers had assumed that only the active sites on the surface of the material were taking any part in the reaction. But this team found a way of directly quantifying the contribution that might be coming from within the bulk of the catalyst material, and showed clearly that this was an important part of the reaction. They used a special “labeled” form of oxygen, the isotope oxygen-18, which makes up only a tiny fraction of the oxygen in ordinary water. By collaborating with Oscar Diaz-Morales and Marc T. Koper at Leiden University in the Netherlands, they first exposed the catalyst to water made almost entirely of oxygen-18, and then placed the catalyst in normal water (which contains the more common oxygen-16). Upon testing the oxygen output from the reaction, using a mass spectrometer that can directly measure the different isotopes based on their atomic weight, they showed that a substantial amount of oxygen-18, which cannot be accounted for by a surface-only mechanism, was indeed being released. The measurements were tricky to carry out, so the work has taken some time to complete. Diaz-Morales “did many experiments using the mass spectrometer to detect the kind of oxygen that was evolved from the water,” says Shao-Horn, who has joint appointments in the departments of Mechanical Engineering and Materials Science and Engineering, and is a co-director of the MIT Energy Initiative’s Center for Energy Storage. With that knowledge and with detailed theoretical calculations showing how the reaction takes place, the researchers say they can now explore ways of tuning the electronic structure of these metal-oxide materials to increase the reaction rate. The amount of oxygen contributed by the catalyst material varies considerably depending on the exact chemistry or electronic structure of the catalyst, the team found. Oxides of different metal ions on the perovskite structure showed greater or lesser effects, or even none at all. In terms of the amount of oxygen output that is coming from within the bulk of the catalyst, “you observe a well-defined signal of the labeled oxygen,” Shao-Horn says. One unexpected finding was that varying the acidity or alkalinity of the water made a big difference to the reaction kinetics. Increasing the water’s pH enhances the rate of oxygen evolution in the catalytic process, Han says. These two previously unidentified effects, the participation of the bulk material in the reaction, and the influence of the pH level on the reaction rate, which were found only for oxides with record high catalytic activity, “cannot be explained by the traditional mechanism” used to explain oxygen evolution reaction kinetics, Diaz-Morales says. “We have proposed different mechanisms to account for these effects, which requires further experimental and computational studies.” “I find it very interesting that the lattice oxygen can take part in the oxygen evolution reactions,” says Ib Chorkendorff, a professor of physics at the Technical University of Denmark, who was not involved in this work. “We used to think that all these basic electrochemical reactions, related to proton membrane fuel cells and electrolyzers, are all taking place at the surface,” but this work shows that “the oxygen sitting inside the catalyst is also taking part in the reaction.” These findings, he says, “challenge the common way of thinking and may lead us down new alleys, finding new and more efficient catalysts.” The team also included Wesley Hong PhD ’16, former postdoc Yueh-Lin Lee, research scientist Livia Giordano in the Department of Mechanical Engineering, Kelsey Stoerzinger PhD ’16, and Marc Koper of the Leiden Institute of Chemistry, in the Netherlands. The work was supported by the Skoltech Center for Electrochemical Energy, the Singapore-MIT Alliance for Research and Technology, the Department of Energy, and the National Energy Technology Laboratory.


News Article | February 15, 2017
Site: news.mit.edu

Fulfilling the promise of the 2015 Paris Agreement on climate change — most notably the goal of limiting the rise in mean global surface temperature since preindustrial times to 2 degrees Celsius — will require a dramatic transition away from fossil fuels and toward low-carbon energy sources. To map out that transition, decision-makers routinely turn to energy scenarios, which use computational models to project changes to the energy mix that will be needed to meet climate and environmental targets. These models account for not only technological, economic, demographic, political, and institutional developments, but also the scope, timing, and stringency of policies to reduce greenhouse gas emissions and air pollution. Model-driven energy scenarios provide policymakers and investors with a powerful decision-support tool but should not be used as a decision-making tool due to several limitations. So argues a new study in the journal Energy and Environment by Sergey Paltsev, deputy director of the MIT Joint Program on the Science and Policy of Global Change and a senior research scientist for both the Joint Program and the MIT Energy Initiative. The study shows that overall, energy scenarios are useful for assessing policymaking and investment risks associated with different emissions reduction pathways, but tend to overestimate the degree to which future energy demand will resemble the past. “Energy scenarios may not provide exact projections, but they are the best available tool to assess the magnitude of challenges that lie ahead,” Paltsev observes in the study, a unique review of the value and limits of widely used energy scenarios that range from the International Energy Agency (IEA) World Energy Outlook, to the Joint Program’s own annual Food, Water, Energy and Climate Outlook (which uses the MIT Economic Projection and Policy Analysis model), to a recent Intergovernmental Panel on Climate Change (IPCC) assessment report (AR5) presenting 392 energy scenarios aligned with the 2 C climate stabilization goal. The study points out that because energy scenarios tend to vary widely in terms of the projections they produce for a given policy and the degree of uncertainty associated with those projections, it’s not advisable to base an energy policy or investment decision on a single energy scenario. Taken collectively, however, energy scenarios can help bring into sharp focus a range of plausible futures — information decision-makers can use to assess the scale and cost of the technological changes needed to effect significant transformations in energy production and consumption. A careful review of multiple energy scenarios associated with a particular emissions pathway can provide a qualitative analysis of what’s driving the results and the potential risks and benefits of a proposed policy or investment. That said, projections in energy scenarios can sometimes be highly inaccurate due to factors that are difficult to anticipate. For example, according to the study, which compared several energy scenario projections to historical observations, most energy scenarios do not account for sudden changes to the status quo. One of the greatest contributors to uncertainty in energy scenarios is the demand for low-emitting energy technologies, whose timing and scale of deployment — dependent on several economic and political factors — is highly unpredictable. Paltsev notes that the IEA constantly underestimates renewable energy production; in its 2006 World Energy Outlook, the agency projected for 2020 a level of wind power generation that the world exceeded as early as 2013. In addition, while energy scenarios have been largely successful in projecting the quantity of global energy demand (e.g., the 1994 IEA World Energy Outlook’s projection for 2010 was off by only 10 percent, despite highly disruptive developments such as the breakup of the Soviet Union, the world recession in 2008, and the emergence of the shale gas industry), most have been considerably off the mark when it comes to projecting energy prices (e.g., in 1993 dollars, the 1994 IEA WEO projected $28/barrel in 2010, but the actual price was $53/barrel). Recognizing the steep challenge in projecting demand and prices for different energy sources in the midst of a dramatic energy transition, Paltsev emphasizes that governments should not try to pick a “winner” — a single energy technology that seems poised to reduce emissions singlehandedly — but rather adopt a strategy that targets emissions reductions from any energy source. “Governments shouldn’t pick the winners, because most likely that choice will be wrong,” he says. “They should instead design policies such as carbon-pricing and emissions trading systems that are designed to achieve emissions reduction targets at the least cost.”


News Article | February 27, 2017
Site: news.mit.edu

Maria T. Zuber, vice president for research and the E.A. Griswold Professor of Geophysics within the Department of Earth, Atmospheric and Planetary Sciences, recently published an op-ed in The Washington Post that described her personal history growing up in eastern Pennsylvania’s coal country and argued for a strategy to support coal industry workers as the world transitions to new, clean energy sources. Zuber spoke with MIT News to share her thoughts on how we can address climate change while also improving the economic fortunes of coal communities. Q: You grew up in Carbon County, Pennsylvania, a place that got its name because of the discovery of anthracite coal there in the late 18th century. Can you tell us about your experience growing up in coal country and what inspired you to write about it? A: Both of my grandfathers were coal miners. They both contracted black lung disease, one dying much too young and the other living longer but suffering mightily from both health problems and underemployment. My grandfathers worked in the mines at a time when the coal industry in eastern Pennsylvania was in the midst of a long decline. My home town, Summit Hill, Pennsylvania, was a place where prosperity and economic opportunity vanished with the decline of the anthracite industry. During the recent presidential campaign and subsequent to the election, I’ve read a lot about how the intellectual elite doesn’t understand the plight of blue collar workers who have lost well-paying jobs and, with that, their hope for the future. And I thought, “Wait a minute, that’s the story of my family.” The more I thought about it, the more I realized that I was in a position to shine a light on this issue and maybe even contribute to improving the situation. Q: How does this personal history you’ve described affect the way that you think about climate change? A: On the one hand, I can really understand why we hear so much about the “war on coal.” That’s a product of the deep anxiety that people feel when they experience such seismic changes caused by things like changes in the global supply and demand for coal, or automation in mining that makes it possible to get more coal with fewer workers. People do feel like they are under attack, that their way of life is under attack. We need to really try to recognize that. On the other hand, my life’s passion, and my career focus, has been science. And as I’ve said many times, the scientific evidence is overwhelming: If we keep emitting carbon dioxide into the atmosphere, then global temperatures are going to continue to rise, and that carries with it unacceptable risks — disruptions to food and water supplies, rising sea levels that could put coastal cities at risk, and so on. So the way I look at it is that we have two responsibilities: We need to take urgent action to address climate change by moving to clean energy, and we also need to take care of the people who do difficult and dangerous work so that we can power our modern economy and enjoy our standard of living. Q: With this dual challenge in mind, what do you think we should we do for coal communities? A: The good news is that, in the long run, transforming our energy system so that it emits zero carbon will create more jobs than it destroys. But if we don’t plan this transformation in an orderly way, then we will see avoidable negative economic impacts on coal communities. As a start, I propose three things we can do. First, we should aggressively pursue carbon capture and storage technology, which catches carbon dioxide from coal power plants before it is released into the atmosphere and stores it underground. We’ll need to improve capture efficiency, lower the deployment costs, and better understand the environmental impacts. The MIT Energy Initiative has launched a low-carbon energy center focused on these challenges. Second, we should expand the use of coal for things that, unlike combustion and steel production, do not produce significant carbon emissions. About nine-tenths of coal production is used for electric power. But researchers here at MIT and at other research institutions around the country are exploring whether coal can be used more widely as a material for the production of carbon fiber, batteries, electronics, and even solar panels. Third, though, we have to recognize that even if carbon capture becomes practicable and we expand other uses for coal, the industry’s fortunes will never fully revive, because of factors like cheap natural gas and the rapidly declining costs of wind and solar energy. So we need to support policies that would promote economic development; help coal workers find employment in other industries, including renewables; and preserve healthcare and retirement benefits for retired coal miners. Fortunately, these are all policies with bipartisan support. The risks of climate change make it clear that we have to stop burning fossil fuels, especially without the use of carbon capture and storage technologies. But we do have choices to make about how we transition to clean energy. We can choose to do it fast enough to head off some of the worst risks of climate change, and we can choose to do it as fairly as possible for communities that have long depended on fossil fuels. These are not impossible challenges, but they do require that we all work together. I think this is the kind of problem that we at MIT are attracted to tackle. We won’t solve the climate change problem without solving the jobs problem.


News Article | February 15, 2017
Site: news.mit.edu

Designing energy-efficient buildings can be challenging: Incorporating features that decrease the energy needed to run them often increases the energy-intensive materials required to build them, and vice versa. Now an MIT team has demonstrated a computer simulation that can help architects optimize their designs for both future operational energy and the initial energy required for making structural materials — at the same time. The technique rapidly generates a set of designs that offer the best compromises between those two critical energy components. The architect can then make a choice based on quantitative information as well as aesthetic preference. The demonstration produced some striking results. In one case, choosing a design that was slightly less efficient in operational energy cut energy for structural materials in half — an opportunity that would have gone undetected using a simulation that optimized operational energy alone. In recent years, concerns about global warming and greenhouse gas emissions have prompted efforts to make buildings more sustainable, or “green.” The main focus has been on reducing the energy that buildings require for heating, cooling, ventilation, and lighting. But an increasing role is being played by “structural embodied energy,” that is, the energy used to extract, process, and transport the structural materials in them. “Newly constructed buildings have become so efficient to operate that the energy embodied in the materials required to create them is becoming a larger and larger percentage of the total energy used,” says Caitlin Mueller, assistant professor of architecture and of civil and environmental engineering at MIT. “Energy is embodied in building materials such as finishes, insulation, and cladding, but far more is in the building’s structural system.” And while benefits from more energy-efficient operation are spread over the lifetime of the building, energy savings from reducing that structural embodied energy — notably, by early decisions about a building’s overall shape — are reaped immediately. When designing a building with energy in mind, therefore, architects need to consider both operational and structural embodied energy, and the two are intertwined. For example, extending the roof out beyond the edge of a building can shade windows and reduce cooling needs in hot climates, but making an overhang that’s structurally sound can take a lot of energy-intensive material. The challenge is to determine a building design that trades off the two goals — and also allows room for creativity and aesthetic decisions. Today’s computer algorithms can help guide the design process, taking just seconds to generate designs that are optimized for several objectives at once. Even so, many architects and structural engineers persist in doing separate analyses, looking either to minimize operational energy consumption or to minimize the amount of energy-intensive material required. And in both cases, they tend to perform their analyses only after they have developed a conceptual design. “They use a simulation program to see if the design they’ve come up with is ‘good enough,’” says Mueller — a process she calls “guess and check.” Mueller and her colleague Nathan Brown SMBT ’16, now a PhD candidate in building technology, are keenly aware of the importance of focusing on structural embodied energy as well as operational energy use. Both are trained in architecture and structural engineering, and both are convinced of the power of computational design. They note in particular today’s “genetic” algorithms, which perform design optimization based on an evolutionary metaphor: They generate “populations” of designs that are “bred” and “mutated” over time for better performance. Given a starting set, the computer calculates the operational and structural embodied energy for each building design and then tweaks certain features or aspects to generate a set of new designs with better characteristics. By repeating the process, the computer analyzes thousands and thousands of designs to produce a limited set for the architect’s consideration. “These final designs are suggested by the computer as ones that are going to do well,” says Brown. “It would be much harder to find them through trial and error, just by guessing. So I think it changes the role of simulation analysis in the design process. It’s not just a checking algorithm but is a way to actually help with creative design exploration.” To demonstrate the power of this approach, Mueller and Brown performed a series of case studies focusing on “long-span buildings” — structures such as airport terminals, concert halls, and bus stations. Such buildings seemed a good subject for their analyses. For one thing, they pose a special modeling challenge: They often have large open spaces with unusual shapes and few interior columns, so they rely on systems of triangular trusses and frames working together to support the load of the building. The structural materials required for those systems make up a significant fraction of the embodied energy component, so they provide a good target for energy savings. In addition, the use of computer simulation early in the design process — when the shape of the building is determined — can have a major impact on embodied energy. Careful choice of the geometry and layout of the structure can reduce internal forces and decrease the amount of energy-intensive structural materials required for support. Two characteristic features of long-span buildings involve trading off operational and structural embodied energy. Already mentioned is the cantilevered overhang, a rigid surface extending out from the main part of a building, anchored only at its origin with no additional support along its length. Adding a carefully designed overhang can block sunlight and reduce cooling loads, but it increases embodied energy by requiring the use of extra structural material. The other aspect of interest is building height. According to Brown, increasing the height will spread out internal forces in the structure so that support systems can be thinner and more widely spaced. Making the structure taller can — up to a point — reduce the amount of building material required, and embodied energy will decline. But a taller building has more exterior surface — the “building envelope” — and a greater volume of air to be conditioned, both of which generally increase operational energy. To test those trade-offs in practical systems, Mueller and Brown analyzed three types of long-span structures: an enclosed, trussed arch; a “PI” structure (resembling the Greek letter); and an “x-brace.” Figure 1 in the slideshow above shows diagrams of the three building types along with photos of representative buildings. The upper diagrams indicate certain set dimensions along with others to be defined, while the lower diagrams include dashed outlines showing the building envelopes. Analysis of the enclosed arch demonstrates energy trade-offs involved in selecting height, while analyses of the PI structure and the x-brace show trade-offs associated with both height and overhang. For each building type, the researchers defined a three-dimensional structure for simulation by assuming a parallel lineup of identical units to create an indoor space with a set floor area. They then ran simulations using a multi-objective genetic algorithm plus a collection of other programs to calculate operational and structural embodied energy. The former is based on energy flows for heating, cooling, lighting, ventilation, and so on. For the latter, they considered only the use of steel, a key structural material in long-span buildings. The amount of steel required is determined by calculating the load on each member of the structure and the smallest section size required to support it. The total steel in the design is computed and then converted (based on weight) into structural embodied energy using a standard coefficient. Based on those evaluations, the multi-objective optimization algorithm comes up with a new set of designs that should perform better — and the process repeats. Figure 2 in the slideshow above shows simulation results for the closed arch in four locations representing different climates: Abu Dhabi (arid), Boston (cool), Singapore (tropical), and Sydney (temperate). Each diagram plots annual operational energy against embodied energy of the structure, both measured in gigajoules per square meter. Individual dots on the diagrams represent specific designs generated by the computer. The series of dark dots on each diagram forms the “Pareto front” — the best collection of compromising designs where the designer can’t make one performance objective better without making the other one worse. The dark dot at the farthest left in each diagram minimizes structural embodied energy regardless of operational energy, while the dark dot at the farthest right minimizes operational energy regardless of embodied energy. Points in between represent designs that are compromises between those objectives for a given emphasis on one objective over the other (say, minimizing operational energy more than embodied energy). Of particular interest are the shapes of the Pareto fronts. The front for Boston is the classic shape — sometimes called a banana curve. The results are on a continuum such that moving either way will enable the user to do a bit better on one objective while doing a bit worse on the other. In contrast, the curve for Abu Dhabi contains a long, flat section and then an abrupt 90-degree turn at a point referred to as the knee. In that case, moving left along the Pareto front will enable the user to significantly reduce embodied energy without much sacrifice in operational energy — as far as the knee, when operational energy suddenly jumps up. The point at the knee is therefore likely to be a good choice, as it provides a good balance between the two variables. “A single-objective optimization for operational energy would produce the dot farthest to the right,” says Mueller. “But by considering both objectives, we find that with just a small increase in operational energy, we can decrease embodied energy by about a factor of two.” Figure 3 in the slideshow above presents a “visual catalog” of the arch configurations that correspond to five selected points on the Pareto fronts in the previous image. The designs range from the most structurally efficient at the top to the most operationally efficient at the bottom. Bars beside each design indicate its structural embodied energy and operational energy, both measured in gigajoules per square meter. The structurally efficient designs don’t differ dramatically from city to city, but the options with efficient operation do. In Abu Dhabi, Boston, and Singapore, efficient operation is achieved by decreasing the arch truss depth and height to reduce the interior conditioned volume and the envelope surface area — a change that also reduces structural efficiency. In contrast, the Sydney arch achieves higher operating efficiency by becoming taller to maximize its surface area. In the mild Sydney climate, exchanging more heat with the outside can stabilize temperatures inside. The transition from embodied to operational energy efficiency is more gradual with the x-brace, as shown in the slideshow above. In Abu Dhabi and Singapore, all the solutions are fairly shallow, with small envelope surface areas and shading edges that curve down toward the windows they protect. In Boston, the main arch members become less curved, with flatter shading elements that allow more sunlight to enter and offset heating loads. In Sydney, those elements also become flat but at a higher angle, which generates taller walls and windows — again supporting greater surface area and more extensive heat exchange with the outdoors. Interestingly, in several cases the x-brace is noticeably asymmetrical so as to more effectively block out or let in the sun. The researchers think there’s more to be done with their methodology. Already they have performed a series of analyses to show how different assumptions about building lifetimes and operational efficiency can change the shape of the Pareto front. Factors such as monetary cost and constructability could also be considered and traded off. But they hope that their work to date will encourage architects and structural engineers to incorporate the MIT team’s methodology early in the design process, when it can push solutions in interesting and unexpected ways and lead to new building designs that are high-performance, innovative, and architecturally expressive. This research was supported by the MIT Department of Architecture, including a one-semester Hyzen Fellowship awarded to Nathan Brown. This article appears in the Autumn 2016 issue of Energy Futures, the magazine of the MIT Energy Initiative.


News Article | February 15, 2017
Site: news.mit.edu

MIT graduate students working in energy conduct widely varied research projects — from experiments in fundamental chemistry to surveys of human behavior — but they share the common benefit of gaining hands-on work experience while helping to move the needle toward a low-carbon future. “You learn about a lot of wonderful things in theory, in reference books, but you never really get a feel for [research] unless you’re actually involved in it,” says Srinivas Subramanyam, a PhD candidate in materials science and engineering whose work as a research assistant (RA) focuses on developing a lubricant-impregnated surface that may one day keep oil and gas pipelines free of clogs. “Having a research assistantship has been a very good experience.” “I see this as a first step in a long-term research agenda that I hope to continue in my academic career,” says J. Cressica Brazier, a PhD candidate in urban studies and planning who is developing a mobile carbon footprinting tool to gauge personal energy consumption. Brazier says this RA work has given her a variety of skills — from statistical modeling to team building — that will help her continue to research low-carbon urban development in the years ahead. The academic track isn’t the only option for well-trained RAs, however. Qing Liu, a PhD candidate in chemistry and a 2016-2017 Shell-MIT Energy Fellow, says he also feels qualified to work as a data scientist, energy analyst, or consultant. “I think the expertise I’ve gained from the research assistantship definitely helped broaden my career choices,” says Liu, whose research centers on a catalytic process that converts airborne pollutants to fuels. Research assistants are paid to conduct research under the supervision of a faculty advisor, and they often pursue novel investigations of their own design — in many cases leading to doctoral theses and other peer-reviewed publications at the cutting edge of their fields. For this reason, RAs play a crucial role in moving the world toward a low-carbon energy system, says Antje Danielson, director of education at the MIT Energy Initiative (MITEI). “RAs are the worker bees of the research projects, and they are the people who produce the data and the prototypes that will then lead to discovery and innovation, so they’re very valuable members of the energy innovation ecosystem. They are the future,” says Danielson, noting that Brazier, Liu, and Subramanyam were all supported by MITEI funding. “Meanwhile, they learn lab skills, analytical skills, and if this is their thesis project, they really learn how to analyze a specific topic and write up their findings.” For Brazier, Liu, and Subramanyam — just three of the more than 2,500 graduate students who work as research assistants and research trainees at MIT — making progress toward a low-carbon energy system is a significant motivator. “The only way I get motivated is if I know this is something that has the potential to make a difference. Abstract problems don’t really drive me,” Subramanyam says. Therefore, he focuses his research on addressing the range of problems caused by the deposition of materials on surfaces — for example, ice buildup on airplane wings, wind turbine blades, overhead powerlines, etc., and scale buildup in gas pipelines, geothermal power plants, and water heaters. “Having that end goal in mind — especially being aware that this is a product that’s important to MITEI — that keeps me working on the problem.” During his research assistantship, Subramanyam succeeded in developing a surface treatment that significantly reduces scale buildup by combining two strategies: changing the morphology of the surface material and adding a coating. The resulting lubricant-impregnated surface promises to improve efficiency in the oil and gas industry by addressing productivity losses due to scale fouling, Subramanyam says. Improving the efficiency of existing energy systems is also central to Liu’s research, which examines the fundamental catalytic chemistry behind the production of natural gas and liquid fuels using greenhouse gases and airborne pollutants. Liu’s work holds promise for the development of more efficient Fischer-Tropsch catalysts, a critical step in the attainment of carbon neutrality. “I definitely feel I’m helping to make the planet greener,” Liu says. Brazier takes a different approach to energy research: She explores how human behavior impacts the greenhouse gas emissions that are contributing to climate change. “We need tools to moderate or mitigate how people use the increasing convenience and comfort that comes with new technologies,” Brazier says. She says she hopes the mobile application she is developing will provide individuals with feedback that will motivate greener lifestyle choices. Whatever specific research RAs focus on, along the way they learn to collaborate, communicate, and persuade others about the validity of their ideas. They also learn project management and how to think systematically about open-ended problems, says Kripa Varanasi, associate professor of mechanical engineering and Subramanyam’s advisor. “They learn a lot of practicalities of how to work in the real world,” he says. “The scientific method, you first experience it once you start working in the lab yourself, confirming and rejecting potential solutions,” Subramanyam says. “You are pushing the boundaries of knowledge, trying to do things no one has ever done.” Teamwork is critical, says Liu, noting that his research involves complex and specialized instrumentation that is very tough to operate alone. “There are two to three people on the same machine, working very closely with each other … so it’s really important to us to have good teamwork,” he says. “That’s something I couldn’t learn from class.” Working with diverse researchers — including faculty members, postdocs, and fellow RAs from a variety of disciplines — rounds out the RAs’ educational experience, the students say. “In terms of really applying statistical tools, I learned more from one RA than I ever did from my sequence of quantitative methods courses,” Brazier says. Ultimately, the RA experience can be transformative. “They come out of undergrad exposed to many subjects, but they haven’t really gotten their hands wet in a lab,” Varanasi says, noting that within a few years he sees major changes. “They become professionals.” This article appears in the Autumn 2016 issue of Energy Futures, the magazine of the MIT Energy Initiative.


RESTON, Va., March 01, 2017 (GLOBE NEWSWIRE) -- Lightbridge Corporation (NASDAQ:LTBR), a U.S. nuclear fuel technology company, today announced that it has been invited to present at two upcoming events at the Massachusetts Institute of Technology (MIT). On Thursday, March 2nd, Seth Grae, CEO, and Jim Malone, Chief Nuclear Fuel Development Officer, will guest lecture at the MIT Department of Nuclear Science and Engineering regarding Lightbridge fuel. The title of the lecture will be: “Shifting the Fuel Paradigm for Light-Water Reactors (LWR).” The event will be part of the MIT Energy Initiative (MITei) Seminar Series. On Friday, March 3rd, Seth Grae, CEO, will participate in a panel discussion at the MIT Energy Conference. The theme of the conference is: “Balance of Power: Enabling the Next Energy Paradigm.” Mr. Grae will discuss Lightbridge fuel for use in existing reactors on a panel entitled: “Everything Old is New Again.” The conference and panel website is available at: https://www.mitenergyconference.org/everything-old-is-new-again. Lightbridge (NASDAQ:LTBR) is a nuclear fuel technology company based in Reston, Virginia, USA. The Company develops proprietary next generation nuclear fuel technologies for current and future reactors. The technology significantly enhances the economics and safety of nuclear power, operating about 1000° C cooler than standard fuel. Lightbridge invented, patented and has independently validated the technology, including successful demonstration of the fuel in a research reactor with near-term plans to demonstrate the fuel under commercial reactor conditions. The Company has assembled a world class development team including veterans of leading global fuel manufacturers. Four large electric utilities that generate about half the nuclear power in the US already advise Lightbridge on fuel development and deployment. The Company operates under a licensing and royalty model, independently validated and based on the increased power generated by Lightbridge-designed fuel and high ROI for operators of existing and new reactors. The economic benefits are further enhanced by anticipated carbon credits available under the Clean Power Plan. Lightbridge also provides comprehensive advisory services for established and emerging nuclear programs based on a philosophy of transparency, non-proliferation, safety and operational excellence. For more information please visit: www.ltbridge.com. To receive Lightbridge Corporation updates via e-mail, subscribe at http://ir.ltbridge.com/alerts.cfm. Lightbridge is on Twitter. Sign up to follow @LightbridgeCorp at http://twitter.com/lightbridgecorp.


News Article | February 23, 2017
Site: www.materialstoday.com

Chemical reactions that release oxygen in the presence of a catalyst, known as oxygen-evolution reactions, are a crucial part of many chemical energy storage processes, including water splitting, electrochemical carbon dioxide reduction and ammonia production. The kinetics of this type of reaction are generally slow, but compounds called metal oxides can have catalytic activities that vary over several orders of magnitude, with some exhibiting the highest activities reported to date for this reaction. The physical origins of these observed catalytic activities are, however, not well-understood. Now, a team at Massachusetts Institute of Technology (MIT) has shown that, in some of these catalysts, oxygen doesn't come only from the water molecules surrounding the catalyst material, but also comes from within the crystal lattice of the catalyst material itself. This finding is reported in a paper in Nature Chemistry by recent MIT graduate Binghong Han, postdoc Alexis Grimaud, professor of energy Yang Shao-Horn, and six others. Their research was aimed at studying how water molecules are split to generate oxygen molecules and what factors limit the reaction rate, Grimaud says. Increasing those reaction rates could lead to more efficient energy storage and retrieval, so determining just where the bottlenecks may be in the reaction is an important step toward making such improvements. The catalysts employed to promote water-splitting reactions are typically metal oxides, and the team wanted "to be able to explain the activity of the sites [on the surface of the catalyst] that split the water," Grimaud says. The question of whether some oxygen gets stored within the crystal structure of the catalyst and then contributes to the overall oxygen output has been debated before, but previous work had never been able to resolve the issue. Most researchers had assumed that only the active sites on the surface of the material were taking any part in the reaction. But the MIT-led team found a way of directly quantifying the contribution that might be coming from within the bulk of the catalyst material, and showed clearly that this was an important part of the reaction. They used a special ‘labeled’ form of oxygen, the isotope oxygen-18, which makes up only a tiny fraction of the oxygen in ordinary water. By collaborating with Oscar Diaz-Morales and Marc Koper at Leiden University in the Netherlands, they first exposed the catalyst to water made almost entirely of oxygen-18, and then placed the catalyst in normal water (which contains the more common oxygen-16). Upon testing the oxygen output from the reaction with a mass spectrometer that can directly measure different isotopes based on their atomic weight, they showed that a substantial amount of oxygen-18, which could not be accounted for by a surface-only mechanism, was indeed being released. The measurements were tricky to carry out, so the work has taken some time to complete. "[Diaz-Morales] did many experiments using the mass spectrometer to detect the kind of oxygen that was evolved from the water," says Shao-Horn, who has joint appointments in the departments of Mechanical Engineering and Materials Science and Engineering, and is also a co-director of the MIT Energy Initiative's Center for Energy Storage. With that knowledge and with detailed theoretical calculations showing how the reaction takes place, the researchers say they can now explore ways of tuning the electronic structure of these metal oxide materials to increase the reaction rate. The amount of oxygen contributed by the catalyst material varies considerably depending on the exact chemistry or electronic structure of the catalyst, the team found. Oxides containing different metal ions showed greater or lesser effects, or even none at all. In terms of the amount of oxygen output that comes from within the bulk of the catalyst, "you observe a well-defined signal of the labeled oxygen," Shao-Horn says. One unexpected finding was that varying the acidity or alkalinity of the water made a big difference to the reaction kinetics. Increasing the water's pH enhances the rate of oxygen evolution in the catalytic process, Han says. These two previously unidentified effects – the participation of the bulk material in the reaction, and the influence of the pH level on the reaction rate – were found only for oxides with record high catalytic activity. "[They] cannot be explained by the traditional mechanism" used to explain oxygen evolution reaction kinetics, says Diaz-Morales. "We have proposed different mechanisms to account for these effects, which requires further experimental and computational studies." This story is adapted from material from Massachusetts Institute of Technology, with editorial changes made by Materials Today. The views expressed in this article do not necessarily represent those of Elsevier. Link to original source.


News Article | February 15, 2017
Site: news.mit.edu

Ketchup’s sluggish pace as it oozes out of its bottle is a longstanding nuisance — but one that is about to be upended by a new product coming to market. The brainchild of MIT mechanical engineer Kripa Varanasi and his students, a new coating called LiquiGlide is set to make the transition from the laboratory to consumer and industrial markets. LiquiGlide renders a surface highly slippery and allows every last drop of ketchup — or almost any other viscous product, from paint, to glue, to cosmetics — to flow from its container without sticking, saving billions of gallons of product from going waste. “Viscous products sticking to the inside of containers leads to huge losses across industries,” Varanasi says. “For example, in paint manufacturing alone, paint sticking to the inside of mixing and holding tanks costs the industry more than 100 million gallons of lost product and billions of dollars per year in associated waste costs. Using the LiquiGlide platform, we are on a mission to eliminate waste generated across manufacturing applications, in areas ranging from food and agrochemical production to health care and energy, to usher in a new era of sustainable manufacturing.” LiquiGlide, which emerged from research initially funded by an MIT Energy Initiative seed grant and an Innovation grant from the Deshpande Center, is just one in a long line of startling discoveries to emerge from Varanasi’s lab. Most of them involve ways of modifying interfaces. “Interfaces are ubiquitous and a lot of important phenomena occur at them, be it mass, momentum, energy, or charge transfer,” he says. “When I came to MIT in 2009 as a faculty member, my vision was to fundamentally alter interfaces to dramatically improve performance across various industries including energy, water, agriculture, manufacturing, food, and medicine. This required both a deep scientific endeavor to change the paradigm and simultaneous effort in scale-up and manufacturing to translate the technologies to market.” The findings by Varanasi and his collaborators could not only help consumers get those last drops of ketchup, honey, or skin cream out of their jars, they may also enhance many other processes relating to manufacturing and power plants, airplane de-icing, flow in pipelines, water treatment and desalination, and reducing agricultural runoff, to name just a few of the team’s recent research results. For Varanasi, the first step in tackling these big problems was getting a better understanding of exactly how the processes worked. “First you have to understand the problem and ask the right questions. A mechanistic understanding is crucial. If you don’t understand the crucial bottlenecks and rate-limiting steps, then you’re looking for a needle in a haystack. Most of the times, significantly larger-than-required effort is expended in running processes. My approach is to develop a rigorous thermodynamic framework that helps identify the true bottlenecks and then figure out efficient kinetic pathways to impart the solution. The exciting part of this is we get the opportunity to learn about multiple disciplines and cross-pollinate our learnings.” Part of that understanding involved finding ways to simplify the mathematical descriptions of what was going on. “If you really understand the phenomena, you can reduce it to a few nondimensional parameters,” Varanasi says. That collapses the complexity into manageable formulas and phase diagrams, “and then we can design new processes, new products, and zero-tradeoff solutions.” That approach, he says, has been “at the heart of the companies we’ve started.” Asking the right questions Varanasi’s choice of a career in science and academia was inspired by a long family history. He grew up in Hyderabad, in southern India, where his father works as an electrical engineer and his mother is a physics lecturer. His grandfathers were teachers. “There was a lot of that in the family — my parents were my first teachers and role models,” he says. He credits his mother Kanthi especially for initiating his ambitions in both science and entrepreneurship, and his father Mohan Rao with helping him to understand mathematics and build science projects. While in school, he was active in science fairs, physics and math competitions, and building various projects starting with a kit of electronic circuits. “My mom got me this amazing kit, and my dad would help me understand how to build stuff with it,” he recalls. After high school in his home city, he went on to earn his undergraduate degree from the Indian Institute of Technology in nearby Madras before coming to MIT as a graduate student to earn his masters and doctoral degrees. “IIT Madras taught me the fundamentals in engineering and gave me the confidence to pursue my dreams,” he says. “Coming to MIT was transformational,” he says. Among other things, he says, he learned the importance of “asking the right questions — not just ‘why,’ but then ‘why not?’” It also taught him about “the entrepreneurial spirit and how to apply it to solving real problems.” He then went into industry, taking a job in the research labs at GE, where he worked for about four and a half years before getting a faculty appointment at MIT. He says working at GE helped him understand what it takes to translate an idea into a useful product. In 2015, he earned tenure as an associate professor in the Department of Mechanical Engineering. He met his wife Manasa during a trip home to India after finishing his doctoral work. She came back with him to the U.S. and then pursued a MS specializing in nanoelectronics. They have one son and a daughter. Varanasi says that the original inspiration for LiquiGlide’s application to consumer products came from Manasa’s suggestion that there must be a better way to get honey out of a jar. “She is very much a part and parcel of everything I do here,” he says. In addition to LiquiGlide, Varanasi has launched another startup company, in partnership with MIT professor of chemical engineering and Associate Provost Karen Gleason, called DropWise. The company is developing durable hydrophobic coatings for power plants and other industrial machinery, to boost their overall efficiency. He points out that 85 percent of the world’s electricity generators rely on steam cycles that are mostly powered by fossil fuels, so even a small improvement in their operating efficiency could have a significant impact on global greenhouse gas emissions. “It has been absolutely terrific to be able to work with MIT students, postdocs, and colleagues,” he says. “It is a great pleasure to see the energy and passion that my students and postdocs bring to the table, and I am very thankful for their hard work and efforts — we are like a family solving these important problems and having fun doing so.” “I’m really passionate about entrepreneurship and translating the research findings from my lab to useful products that provide societal benefit and create economic value,” Varanasi says. “Otherwise, the insights from research do not get used; you can create something unique, but then it can get lost. So getting to a proof of product is very important to me — not just a proof of concept.”

Loading MIT Energy Initiative collaborators
Loading MIT Energy Initiative collaborators