Ministry of Natural Resources and Labour

Tortola, British Virgin Islands

Ministry of Natural Resources and Labour

Tortola, British Virgin Islands
SEARCH FILTERS
Time filter
Source Type

Foster N.L.,University of Exeter | Foster N.L.,University of Plymouth | Paris C.B.,University of Miami | Kool J.T.,James Cook University | And 21 more authors.
Molecular Ecology | Year: 2012

Understanding patterns of connectivity among populations of marine organisms is essential for the development of realistic, spatially explicit models of population dynamics. Two approaches, empirical genetic patterns and oceanographic dispersal modelling, have been used to estimate levels of evolutionary connectivity among marine populations but rarely have their potentially complementary insights been combined. Here, a spatially realistic Lagrangian model of larval dispersal and a theoretical genetic model are integrated with the most extensive study of gene flow in a Caribbean marine organism. The 871 genets collected from 26 sites spread over the wider Caribbean subsampled 45.8% of the 1900 potential unique genets in the model. At a coarse scale, significant consensus between modelled estimates of genetic structure and empirical genetic data for populations of the reef-building coral Montastraea annularis is observed. However, modelled and empirical data differ in their estimates of connectivity among northern Mesoamerican reefs indicating that processes other than dispersal may dominate here. Further, the geographic location and porosity of the previously described east-west barrier to gene flow in the Caribbean is refined. A multi-prong approach, integrating genetic data and spatially realistic models of larval dispersal and genetic projection, provides complementary insights into the processes underpinning population connectivity in marine invertebrates on evolutionary timescales. © 2012 Blackwell Publishing Ltd.


Bostrom B.L.,University of British Columbia | Jones T.T.,University of British Columbia | Jones T.T.,National Oceanic and Atmospheric Administration | Hastings M.,Ministry of Natural Resources and Labour | Jones D.R.,University of British Columbia
PLoS ONE | Year: 2010

Background: Adult leatherback turtles (Dermochelys coriacea) exhibit thermal gradients between their bodies and the environment of ≥8°C in sub-polar waters and ≤4°C in the tropics. There has been no direct evidence for thermoregulation in leatherbacks although modelling and morphological studies have given an indication of how thermoregulation may be achieved. Methodology/Principal Findings:We show for the first time that leatherbacks are indeed capable of thermoregulation from studies on juvenile leatherbacks of 16 and 37 kg. In cold water (< 25°C), flipper stroke frequency increased, heat loss through the plastron, carapace and flippers was minimized, and a positive thermal gradient of up to 2.3°C was maintained between body and environment. In warm water (25 - 31°C), turtles were inactive and heat loss through their plastron, carapace and flippers increased. The thermal gradient was minimized (0.5°C). Using a scaling model, we estimate that a 300 kg adult leatherback is able to maintain a maximum thermal gradient of 18.2°C in cold sub-polar waters. Conclusions/Significance:In juvenile leatherbacks, heat gain is controlled behaviourally by increasing activity while heat flux is regulated physiologically, presumably by regulation of blood flow distribution. Hence, harnessing physiology and behaviour allows leatherbacks to keep warm while foraging in cold sub-polar waters and to prevent overheating in a tropical environment.


Jones T.T.,University of British Columbia | Jones T.T.,National Oceanic and Atmospheric Administration | Bostrom B.L.,University of British Columbia | Hastings M.D.,University of British Columbia | And 5 more authors.
PLoS ONE | Year: 2012

The Pacific population of leatherback sea turtles (Dermochelys coriacea) has drastically declined in the last 25 years. This decline has been linked to incidental capture by fisheries, egg and meat harvesting, and recently, to climate variability and resource limitation. Here we couple growth rates with feeding experiments and food intake functions to estimate daily energy requirements of leatherbacks throughout their development. We then estimate mortality rates from available data, enabling us to raise food intake (energy requirements) of the individual to the population level. We place energy requirements in context of available resources (i.e., gelatinous zooplankton abundance). Estimated consumption rates suggest that a single leatherback will eat upward of 1000 metric tonnes (t) of jellyfish in its lifetime (range 924-1112) with the Pacific population consuming 2.1×106 t of jellyfish annually (range 1.0-3.7×106) equivalent to 4.2×108 megajoules (MJ) (range 2.0-7.4×108). Model estimates suggest 2-7 yr-old juveniles comprise the majority of the Pacific leatherback population biomass and account for most of the jellyfish consumption (1.1×106 t of jellyfish or 2.2×108 MJ per year). Leatherbacks are large gelatinous zooplanktivores with consumption to biomass ratios of 96 (up to 192 if feeding strictly on low energy density Cnidarians); they, therefore, have a large capacity to impact gelatinous zooplankton landscapes. Understanding the leatherback's needs for gelatinous zooplankton, versus the availability of these resources, can help us better assess population trends and the influence of climate induced resource limitations to reproductive output.


Hawkes L.A.,University of Exeter | Hawkes L.A.,Bangor University | McGowan A.,University of Exeter | Godley B.J.,University of Exeter | And 7 more authors.
Aquatic Biology | Year: 2013

Evolutionary theory predicts that male and female offspring should be produced at a 1:1 ratio, but this may rarely be the case for species in which sex is determined during incubation by temperature, such as marine turtles. Estimates of primary sex ratio suggest that marine turtle sex ratios are highly skewed, with up to 9 females per male. We captured juvenile hawksbill turtles Eretmochelys imbricata in waters around Anegada, British Virgin Islands, a regionally important foraging aggregation, and analysed concentrations of plasma testosterone and oestradiol- 17β from 62 turtles to estimate sex ratio. There were 2.4 to 7.7 times more females than males. Testosterone concentrations correlated with sampling date and sea surface temperature (SST), with higher con centrations in the late summer when SST was highest, suggesting that assigning sex through threshold values of sex hormones must be carried out cautiously. The sex ratio in the juvenile foraging aggregation around Anegada is more male biased than at other locations, suggesting that turtles at Anegada have resilience against feminising effects of climate change. Future work should (1) integrate the relative contributions of different genetic stocks to foraging aggregations and (2) investigate the annual and seasonal cycles of sex hormones, and differences among individuals and life history stages. © Inter-Research 2013.


Hawkes L.A.,University of Exeter | Mcgowan A.,University of Exeter | Broderick A.C.,University of Exeter | Gore S.,Ministry of Natural Resources and Labour | And 4 more authors.
Ecology and Evolution | Year: 2014

Management of species of conservation concern requires knowledge of demographic parameters, such as rates of recruitment, survival, and growth. In the Caribbean, hawksbill turtles (Eretmochelys imbricata) have been historically exploited in huge numbers to satisfy trade in their shells and meat. In the present study, we estimated growth rate of juvenile hawksbill turtles around Anegada, British Virgin Islands, using capture-mark-recapture of 59 turtles over periods of up to 649 days. Turtles were recaptured up to six times, having moved up to 5.9 km from the release location. Across all sizes, turtles grew at an average rate of 9.3 cm year-1 (range 2.3-20.3 cm year-1), and gained mass at an average of 3.9 kg year-1 (range 850 g-16.1 kg year-1). Carapace length was a significant predictor of growth rate and mass gain, but there was no relationship between either variable and sea surface temperature. These are among the fastest rates of growth reported for this species, with seven turtles growing at a rate that would increase their body size by more than half per year (51-69% increase in body length). This study also demonstrates the importance of shallow water reef systems for the developmental habitat for juvenile hawksbill turtles. Although growth rates for posthatching turtles in the pelagic, and turtles larger than 61 cm, are not known for this population, the implications of this study are that Caribbean hawksbill turtles in some areas may reach body sizes suggesting sexual maturity in less time than previously considered. In the present study, we estimated growth rate of juvenile hawksbill turtles around Anegada, British Virgin Islands, using capture-mark-recapture of 59 turtles over periods of up to 649 days. Across all sizes, turtles grew at an average rate of 9.3 cm per year (range 2.3-20.3 cm year-1), and gained mass at an average of 3.9 kg year-1 (range 850 g-16.1 kg year-1). These are among the fastest rates of growth reported for this species, with seven turtles growing at a rate that would increase their body size by more than half per year (51-69% increase in body length). © 2014 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.

Loading Ministry of Natural Resources and Labour collaborators
Loading Ministry of Natural Resources and Labour collaborators