Entity

Time filter

Source Type

Rivas, Nicaragua

Callejas L.,Field Epidemiology Training Program | Darce A.C.M.,Field Epidemiology Training Program | Amador J.J.,Nicaragua Ministry of Health | Conklin L.,Centers for Disease Control and Prevention | And 10 more authors.
BMC Research Notes | Year: 2015

Background: During an October 2005 algal bloom (i.e., a rapid increase or accumulation in the population of algae) off the coast of Nicaragua, 45 people developed symptoms of paralytic shellfish poisoning (PSP) and one person died. PSP in humans is caused by ingestion of saxitoxin, which is a neurotoxin often associated with shellfish contaminated by algal blooms. To explore the relationship between the algal bloom and human illnesses, we performed a case-control study of residents living in a coastal island. We administered a standardized clinical questionnaire, sampled locally harvested seafood and algae, and obtained urine samples for saxitoxin testing from symptomatic and asymptomatic persons. PSP case-patients were defined as island residents who developed at least one neurological symptom during the November 4-16 intoxication period. Seafood and algal samples were analyzed for saxitoxins using the receptor-binding assay and high-performance liquid chromatography. Two urine samples were analyzed for saxitoxins using a newly developed immunoassay. Findings: Three shellfish and two algal samples tested positive for saxitoxins. Ten (9%) of 107 participants developed neurological symptoms during the specified time period and five required hospitalization. While 6 (67%) of 9 possible case-patients and 21 (21%) of 98 controls had eaten fish (p=0.008), all case-patients and 17 (17%) of controls had eaten clams (P<0.0001). The saxitoxin concentration in the urine of a hospitalized case-patient was 21 ng saxitoxin/g creatinine compared to 0.16 ng saxitoxin/g creatinine in the single control patient's urine. Conclusions: These findings suggest that a bloom of saxitoxin-producing algae resulted in saxitoxin accumulation in local clams and was responsible for the PSP intoxication. © 2015 Callejas et al.; licensee BioMed Central. Source

Discover hidden collaborations