Time filter

Source Type

Irvine, CA, United States

Bodner M.,MIND Research Institute | Bodner M.,Johns Hopkins University | Turner R.P.,Medical University of South Carolina | Schwacke J.,Medical University of South Carolina | And 2 more authors.
PLoS ONE | Year: 2012

Background: The purpose of this work was to determine in a clinical trial the efficacy of reducing or preventing seizures in patients with neurological handicaps through sustained cortical activation evoked by passive exposure to a specific auditory stimulus (particular music). The specific type of stimulation had been determined in previous studies to evoke anti-epileptiform/anti-seizure brain activity. Methods: The study was conducted at the Thad E. Saleeby Center in Harstville, South Carolina, which is a permanent residence for individuals with heterogeneous neurological impairments, many with epilepsy. We investigated the ability to reduce or prevent seizures in subjects through cortical stimulation from sustained passive nightly exposure to a specific auditory stimulus (music) in a three-year randomized controlled study. In year 1, baseline seizure rates were established. In year 2, subjects were randomly assigned to treatment and control groups. Treatment group subjects were exposed during sleeping hours to specific music at regular intervals. Control subjects received no music exposure and were maintained on regular anti-seizure medication. In year 3, music treatment was terminated and seizure rates followed. We found a significant treatment effect (p = 0.024) during the treatment phase persisting through the follow-up phase (p = 0.002). Subjects exposed to treatment exhibited a significant 24% decrease in seizures during the treatment phase, and a 33% decrease persisting through the follow-up phase. Twenty-four percent of treatment subjects exhibited a complete absence of seizures during treatment. Conclusion/Significance: Exposure to specific auditory stimuli (i.e. music) can significantly reduce seizures in subjects with a range of epilepsy and seizure types, in some cases achieving a complete cessation of seizures. These results are consistent with previous work showing reductions in epileptiform activity from particular music exposure and offers potential for achieving a non-invasive, non-pharmacologic treatment of epilepsy. Trial Registration: Clinicaltrials.gov NCT01459692. © 2012 Bodner et al.

Verduzco-Flores S.,University of Pittsburgh | Ermentrout B.,University of Pittsburgh | Bodner M.,MIND Research Institute
Neural Networks | Year: 2012

Recurrent networks of cortico-cortical connections have been implicated as the substrate of working memory persistent activity, and patterned sequenced representation as needed in cognitive function. We examine the pathological behavior which may result from specific changes in the normal parameters or architecture in a biologically plausible computational working memory model capable of learning and reproducing sequences which come from external stimuli. Specifically, we examine systematical reductions in network inhibition, excitatory potentiation, delays in excitatory connections, and heterosynaptic plasticity. We show that these changes result in a set of dynamics which may be associated with cognitive symptoms associated with different neuropathologies, particularly epilepsy, schizophrenia, and obsessive compulsive disorders. We demonstrate how cognitive symptoms in these disorders may arise from similar or the same general mechanisms acting in the recurrent working memory networks. We suggest that these pathological dynamics may form a set overlapping states within the normal network function, and relate this to observed associations between different pathologies. © 2011 Elsevier Ltd.

Au J.,University of California at Irvine | Sheehan E.,University of California at Irvine | Tsai N.,University of California at Irvine | Duncan G.J.,University of California at Irvine | And 2 more authors.
Psychonomic Bulletin and Review | Year: 2015

Working memory (WM), the ability to store and manipulate information for short periods of time, is an important predictor of scholastic aptitude and a critical bottleneck underlying higher-order cognitive processes, including controlled attention and reasoning. Recent interventions targeting WM have suggested plasticity of the WM system by demonstrating improvements in both trained and untrained WM tasks. However, evidence on transfer of improved WM into more general cognitive domains such as fluid intelligence (Gf) has been more equivocal. Therefore, we conducted a meta-analysis focusing on one specific training program, n-back. We searched PubMed and Google Scholar for all n-back training studies with Gf outcome measures, a control group, and healthy participants between 18 and 50 years of age. In total, we included 20 studies in our analyses that met our criteria and found a small but significant positive effect of n-back training on improving Gf. Several factors that moderate this transfer are identified and discussed. We conclude that short-term cognitive training on the order of weeks can result in beneficial effects in important cognitive functions as measured by laboratory tests. © 2014, Psychonomic Society, Inc.

Katz B.,University of Michigan | Jaeggi S.,University of California at Irvine | Buschkuehl M.,MIND Research Institute | Stegman A.,University of Michigan | Shah P.,University of Michigan
Frontiers in Human Neuroscience | Year: 2014

Cognitive training often utilizes game-like motivational features to keep participants engaged. It is unclear how these elements, such as feedback, reward, and theming impact player performance during training. Recent research suggests that motivation and engagement are closely related to improvements following cognitive training. We hypothesized that training paradigms featuring game-like motivational elements would be more effective than a version with no motivational elements. Five distinct motivational features were chosen for examination: a real-time scoring system, theme changes, prizes, end-of-session certificates, and scaffolding to explain the lives and leveling system included in the game. One version of the game was created with all these motivational elements included, and one was created with all of them removed. Other versions removed a single element at a time. Seven versions of a game-like n-back working memory task were then created and administered to 128 students in second through eight grade at school-based summer camps in southeastern Michigan. The inclusion of real-time scoring during play, a popular motivational component in both entertainment games and cognitive training, was found to negatively impact training improvements over the three day period. Surprisingly, scaffolding to explain lives and levels also negatively impacted training gains. The other game adjustments did not significantly impact training improvement compared to the original version of the game with all features included. These findings are preliminary and are limited by both the small sample size and the brevity of the intervention. Nonetheless, these findings suggest that certain motivational elements may distract from the core cognitive training task, reducing task improvement, especially at the initial stage of learning. © 2014 Katz, Jaeggi, Buschkuehl, Stegman and Shah.

Jaeggi S.M.,University of California at Irvine | Buschkuehl M.,University of California at Irvine | Buschkuehl M.,MIND Research Institute | Shah P.,University of Michigan | Jonides J.,University of Michigan
Memory and Cognition | Year: 2014

Working memory (WM) training has recently become a topic of intense interest and controversy. Although several recent studies have reported near- and far-transfer effects as a result of training WM-related skills, others have failed to show far transfer, suggesting that generalization effects are elusive. Also, many of the earlier intervention attempts have been criticized on methodological grounds. The present study resolves some of the methodological limitations of previous studies and also considers individual differences as potential explanations for the differing transfer effects across studies. We recruited intrinsically motivated participants and assessed their need for cognition (NFC; Cacioppo & Petty Journal of Personality and Social Psychology 42:116-131, 1982) and their implicit theories of intelligence (Dweck, 1999) prior to training. We assessed the efficacy of two WM interventions by comparing participants' improvements on a battery of fluid intelligence tests against those of an active control group. We observed that transfer to a composite measure of fluid reasoning resulted from both WM interventions. In addition, we uncovered factors that contributed to training success, including motivation, need for cognition, preexisting ability, and implicit theories about intelligence. © 2013 Psychonomic Society, Inc.

Discover hidden collaborations