Time filter

Source Type

Davis, CA, United States

Hinde K.,Harvard University | Hinde K.,Mind and Behavior Unit | Hinde K.,Smithsonian Institution | Hinde K.,University of California at Davis | German J.B.,University of California at Davis
Journal of the Science of Food and Agriculture | Year: 2012

In the emergence of diverse animal life forms, food is the most insistent and pervasive of environmental pressures. As the life sciences begin to understand organisms in genomic detail, evolutionary perspectives provide compelling insights into the results of these dynamic interactions between food and consumer. Such an evolutionary perspective is particularly needed today in the face of unprecedented capabilities to alter the food supply. What should we change? Answering this question for food production, safety and sustainability will require a much more detailed understanding of the complex interplay between humans and their food. Many organisms that we grow, produce, process and consume as foods naturally evolved adaptations in part to avoid being eaten. Crop breeding and processing have been the tools to convert overtly toxic and antinutritious commodities into foods that are safe to eat. Now the challenge is to enhance the nutritional quality and thereby contribute to improving human health. We posit that the Rosetta stone of food and nourishment is mammalian lactation and 'mother's milk'. The milk that a mammalian mother produces for her young is a complete and comprehensive diet. Moreover, the capacity of the mammary gland as a remarkable bioreactor to synthesise milk, and the infant to utilise milk, reflects 200 million years of symbiotic co-evolution between producer and consumer. Here we present emerging transdisciplinary research 'decoding' mother's milk from humans and other mammals. We further discuss how insights from mother's milk have important implications for food science and human health. © 2012 Society of Chemical Industry. Source

Bernstein R.M.,University of Colorado at Boulder | Hinde K.,Arizona State University | Hinde K.,Mind and Behavior Unit
American Journal of Primatology | Year: 2016

Among mammals, numerous bioactive factors in milk vary across mothers and influence offspring outcomes. This emerging area of research has primarily investigated such dynamics within rodent biomedical models, domesticated dairy breeds, and among humans in clinical contexts. Less understood are signaling factors in the milk of non-human primates. Here, we report on multiple bioactive components in rhesus macaque (Macaca mulatta) milk and their associations with maternal and infant characteristics. Milk samples were collected from 59 macaques at multiple time points across lactation in conjunction with maternal and infant morphometrics and life-history animal records. Milk was assayed for adiponectin (APN), epidermal growth factor (EGF) and its receptor (EGF-R), and transforming growth factor beta 2 (TGF-β2). Regression models were constructed to assess the contributions of maternal factors on variation in milk bioactives, and on the relationship of this variation to infant body mass and growth. Maternal body mass, parity, social rank, and infant sex were all predictive of concentrations of milk bioactives. Primiparous mothers produced milk with higher adiponectin, but lower EGF, than multiparous mothers. Heavier mothers produced milk with lower EGF and EGF-R, but higher TGF-β2. Mothers of daughters produced milk with higher TGF-β2. Mid-ranking mothers produced milk with higher mean EGF and adiponectin concentrations than low-ranking mothers. Milk EGF and EGF-R were positively associated with infant body mass and growth rate. Importantly, these signaling bioactives (APN, EGF, EGF-R, and TGF-β2) were significantly correlated with nutritional values of milk. The effects of milk signals remained after controlling for the available energy in milk revealing the added physiological role of non-nutritive milk bioactives in the developing infant. Integrating analyses of energetic and other bioactive components of milk yields an important perspective for interpreting the magnitude, sources, and consequences of inter-individual variation in milk synthesis. Am. J. Primatol. 78:838–850, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc. Source

Nunez C.L.,Duke University | Grote M.N.,University of California at Davis | Wechsler M.,Stanford University | Allen-Blevins C.R.,Harvard University | And 2 more authors.
American Journal of Primatology | Year: 2015

Female mammals often begin to reproduce before achieving somatic maturity and therefore face tradeoffs between allocating energy to reproduction or their own continued development. Constraints on primiparous females are associated with greater reproductive failure, and first-born infants often have slower growth and greater mortality and morbidity than infants born to multiparous females. Effects of early life investment may persist even after weaning when juveniles are no longer dependent on maternal care and mother's milk. We investigated the long-term consequences of birth order in a large sample of rhesus macaques, Macaca mulatta, assigned to the outdoor breeding colony at the California National Primate Research Center (n=2, 724). A joint model for growth and mortality over the first three years of life allowed us to explicitly connect growth rates to survival. As expected, males are born heavier and grow faster relative to females. However, contrary to expectations, later-born males face substantially lower survival probability during their first three years, whereas first-born males survive at greater rates similar to both first-born and later-born females. Primiparous mothers are less likely to conceive during the subsequent breeding season, suggesting that their reproductive costs are greater than those of multiparous mothers. We speculate that compensatory tactics, both behavioral and physiological, of first-born offspring and their mothers, as well as the novel ecology of the captive environment, underlie these findings. The results presented here provide new insights into how maternal and infant life history tradeoffs may influence developmental trajectories even after the period of maternal dependence. Am. J. Primatol. 77:963-973, 2015. © 2015 Wiley Periodicals, Inc. Source

Brunelli R.L.,Mind and Behavior Unit | Brunelli R.L.,Animal Behavior Graduate Group | Blake J.,Animal Care Unit | Willits N.,University of California at Davis | And 2 more authors.
Journal of the American Association for Laboratory Animal Science | Year: 2014

Nursery-reared infants have several behavioral and physiologic differences from their mother-reared counterparts. We investigated whether a response-contingent surrogate mitigated some of those differences by decreasing fearfulness and partner-clinging and increasing environmental exploration in nursery-reared infants continuously paired with a peer. Six nursery-reared infant rhesus macaques (in pairs) were given a mechanical responsive surrogate (RS), and 6 (in pairs) were given an identical but nonresponsive surrogate (NRS). The 2 treatment groups were compared and then combined into a single group of all 12 of surrogate-exposed animals (CS) that was compared with a nonsurrogate control group (NS) of 10 nursery-reared infants. Results showed significant differences between CS and NS infants but no significant differences between the RS and NRS infants. As compared with NS infants, CS infants showed less partner-clinging, less affiliation directed toward only partner, and more foraging and tactile-oral exploration of the environment. These advantageous effects support additional research to develop improved surrogate and the implementation of surrogate programs for nursery-reared infants. Copyright 2014 by the American Association for Laboratory Animal Science Source

Discover hidden collaborations