Billerica, MA, United States
Billerica, MA, United States

Time filter

Source Type

Patent
Millipore | Date: 2016-11-15

A laminate is provided comprising at least one polysulfone and/or polyethersulfone porous membrane heat bonded to a polyvinylidene fluoride substrate.


Patent
Millipore | Date: 2017-02-15

The present invention relates to improved processes and systems for purification of biological molecules, where the processes can be performed in a continuous manner.


Patent
Millipore | Date: 2017-02-01

The present invention provides for a method of producing an integral multilayered porous membrane by simultaneously co-casting a plurality of polymer solutions onto a support to form a multilayered liquid sheet and immersing the sheet into a liquid coagulation bath to effect phase separation and form a porous membrane. The support can be a temporary support or form an integrated support for the membrane. The plurality of layers may be of the same polymer or different, same concentration or viscosity or different and may be subjected to the same processing conditions or different ones to form unique structures.


Grant
Agency: Cordis | Branch: H2020 | Program: IA | Phase: BIOTEC-4-2014 | Award Amount: 10.57M | Year: 2015

The scope of the project is the optimization of downstream process (DSP) for the production of Biopharmaceuticals. Biopharmaceuticals have been successfully used as efficient therapeutic drugs for many pathophysiological conditions since the first recombinant product, insulin, was approved in 1982. Despite its efficacy, accessibility is still limited due to extremely high costs. In the production chain, capturing and purifying still represents a major bottleneck. Consequently, improvements in this area produce substantial cost reductions and expand patients accessibility to highly efficient drugs. Another aim of this action is to cope with the changing manufacturing demands, by lowering its environmental footprint and moving to more sustainable technologies. This proposals main objective is to implement a fully integrated manufacturing platform based on continuous chromatography in combination with disposable techniques for all unit operations of the DSP sequence for biosimilar monoclonal antibodies and derivatives thereof. The action encompasses the entire DSP sequence. We will implement alternative technologies for primary separation, such as flocculation or tangential flow filtration. The expected outcome is a reduction in the size and number of downstream unit operations and the elimination of centrifugation. Alternative approaches to the batch process for the capture step, such as continuous chromatography, will be evaluated in order to improve the efficiency and lower the need for expensive resin volume. Additionally precipitation utilization will be evaluated as an approach to replace protein A chromatography as capture step. A disposable continuous chromatography system will be developed together with novel analytical tools and sensors. Since single-use disposable systems can substitute the extensive use of resources (water) and significantly reduce the overall utility needs, the whole DSP sequence will be carried out on disposable technology (PAT).


Patent
Millipore | Date: 2016-09-14

In one embodiment, a removable pneumatic connector, comprises a body having a plurality of bores passing through, each bore surrounded by a sealing member on an inner surface of the body. A plurality of gas lines may be placed within a corresponding bore. A vacuum port is disposed on the inner surface of the body, and an outer seal on the inner surface of the body surrounds the sealing members and the vacuum port.A vacuum line may be placed within the vacuum port, and configured to deliver negative pressure to the vacuum port. A vacuum holding area is created in the volume between the outer seal and each of the sealing members when the inner surface of the body is placed against a substrate. When the vacuum line is activated, a vacuum is created within the vacuum holding area, creating a positive seal between the body and the substrate.


Patent
Millipore | Date: 2016-06-29

A chromatography particle comprises first and second regions. At least one characteristic of the first region differs from that of the second region. The specified characteristics are pore size distribution, ligand density, ligand type, ligand mixture, media material and percent agarose. Biomolecule purifications in which separation makes use of such particles, is improved by the structure of the invention.


A method and apparatus for providing more reliable wireless communication and power to sensors in electrically challenging bioprocess environments is disclosed. An unconnected antenna is located within the bioprocess environment, preferably in the same plane as the primary powered antenna. This unconnected antenna, also referred to as reflective antenna, enhances and confines the electromagnetic field created by the powered antenna. This reflective antenna is incorporated in or proximate to the devices containing a sensor or communication device. In one embodiment, the reflective antenna is incorporated into the filter housing. In another embodiment, it is incorporated into the filtering element itself. In another embodiment, it is incorporated into or affixed on the disposable bioprocess components, such as bags and tubes.


A number of novel improved microfluidic configurations and systems and methods of manufacture and operation. In one embodiment, three wells are used for independent cell culture systems in a cell culture array. In a second aspect, artificial sinusoids with artificial epithelial barriers are provided with just one (optionally shared or multiplexed) fluidic inlet and one (optionally shared or multiplexed) fluidic output, where the medium output also functions as a cellular input. A pneumatic cell loader combined with other components provides a fully automated cell culture system. Magnetic alignment of plate molds provides advantages and ease of molded manufacture.


A method and apparatus for providing more reliable wireless communication and power to sensors in electrically challenging bioprocess environments is disclosed. An unconnected antenna is located within the bioprocess environment, preferably in the same plane as the primary powered antenna. This unconnected antenna, also referred to as reflective antenna, enhances and confines the electromagnetic field created by the powered antenna. This reflective antenna is incorporated in or proximate to the devices containing a sensor or communication device. In one embodiment, the reflective antenna is incorporated into the filter housing. In another embodiment, it is incorporated into the filtering element itself. In another embodiment, it is incorporated into or affixed on the disposable bioprocess components, such as bags and tubes.


Patent
Millipore | Date: 2016-01-26

The embodiments disclosed herein are directed to an apparatus useful in conducting detection of compounds on blotting membranes. The device is comprised of several layers including a porous support layer below the blotting membrane(s), a flow distributor above the blotting membrane(s) and optionally a well on the flow distributor to contain the liquid to the desired area and to allow for lower starting volumes of such liquid. Preferably, the flow distributor is a non-binding or low binding hydrophilic porous membrane such as a 0.22 micron membrane and the support layer is a grid or sintered porous material. The distributor and support are held together to form an envelope around the membrane(s). The use of a hinge, clips and other such devices is preferred in doing so.

Loading Millipore collaborators
Loading Millipore collaborators