Redmond, WA, United States
Redmond, WA, United States
SEARCH FILTERS
Time filter
Source Type

Patent
MicroVision | Date: 2017-04-04

A scanning projector and method is provided that generates a feedback signal from at least one photodetector. In the scanning projector, a scanning mirror is configured to reflect laser light into an image region and an over scanned region. The at least one photodetector is configured to receive a portion of the reflected laser light impacting the over scanned region, and provides the feedback signal responsive to the received portion of light. This feedback signal can then be used to provide precise control of the scanning mirror.


Patent
MicroVision | Date: 2017-07-19

A scanning projector (100) includes a programmable voltage source (120) to provide a programmable voltage to a laser light source (130). A look-ahead circuit determines future voltage requirements by finding peaks in future pixel data. The programmable voltage may change for each frame of video, for each line of video, or multiple times within each line of video.


Patent
MicroVision | Date: 2017-07-19

A scanning laser projector (100) includes a proximity sensor and a planarity detector. When the proximity sensor detects an object closer than a proximity threshold, laser power is turned down. The scanning laser projector (100) can measure distance at a plurality of projection points in the projectors field of view. If the projection points lie substantially in a plane, laser power may be turned back up.


Patent
MicroVision | Date: 2016-12-28

A scanning projector (100) includes a brightness compensation component (102). The brightness compensation component modifies pixel brightness as a function of instantaneous scan phase of a sinusoidally scanning mirror (162). The brightness compensation component uses different brightness compensation functions based on whether the instantaneous scan phase is above or below a threshold. The threshold may correspond to a knee of a maximum laser power limit curve.


Patent
MicroVision | Date: 2016-10-31

A structure for grounding an extreme ultraviolet mask (EUV mask) is provided to discharge the EUV mask during the inspection by an electron beam inspection tool. The structure for grounding an EUV mask includes at least one grounding pin to contact conductive areas on the EUV mask, wherein the EUV mask may have further conductive layer on sidewalls or/and back side. The inspection quality of the EUV mask is enhanced by using the electron beam inspection system because the accumulated charging on the EUV mask is grounded. The reflective surface of the EUV mask on a continuously moving stage is scanned by using the electron beam simultaneously. The moving direction of the stage is perpendicular to the scanning direction of the electron beam.


Patent
MicroVision | Date: 2017-01-06

Embodiments of this patent disclosure provide for eyeglasses with multiple set of hinges for folding into a compact configuration to be fitted inside a compact case for easy storage and carrying. In one aspect, a pair of foldable eyeglasses having multiple set of hinges is disclosed. The eyeglasses include a frame surrounding a pair of lenses, and a pair of temples each of which extending from an outer edge of the frame, and the eyeglasses are in an unfolded configuration when the eyeglasses is being worn by a user. The eyeglasses also include a horizontal hinge positioned on each temple for folding the pair of temples horizontally from the unfolded configuration toward the frame into a first folded configuration. The eyeglasses additionally include a vertical hinge positioned on each temple for folding the pair of temples vertically from the first folded configuration toward the frame into a second folded configuration.


Patent
MicroVision | Date: 2016-07-19

A multi-beam apparatus for observing a sample with high resolution and high throughput and in flexibly varying observing conditions is proposed. The apparatus uses a movable collimating lens to flexibly vary the currents of the plural probe spots without influencing the intervals thereof, a new source-conversion unit to form the plural images of the single electron source and compensate off-axis aberrations of the plural probe spots with respect to observing conditions, and a pre-beamlet-forming means to reduce the strong Coulomb effect due to the primary-electron beam.


Patent
MicroVision | Date: 2016-07-21

A multi-beam apparatus for observing a sample with high resolution and high throughput is proposed. In the apparatus, a source-conversion unit forms plural and parallel images of one single electron source by deflecting plural beamlets of a parallel primary-electron beam therefrom, and one objective lens focuses the plural deflected beamlets onto a sample surface and forms plural probe spots thereon. A movable condenser lens is used to collimate the primary-electron beam and vary the currents of the plural probe spots, a pre-beamlet-forming means weakens the Coulomb effect of the primary-electron beam, and the source-conversion unit minimizes the sizes of the plural probe spots by minimizing and compensating the off-axis aberrations of the objective lens and condenser lens.


Patent
MicroVision | Date: 2016-03-09

A multi-beam apparatus for observing a sample with high resolution and high throughput is proposed. In the apparatus, a source-conversion unit changes a single electron source into a virtual multi-source array, a primary projection imaging system projects the array to form plural probe spots on the sample, and a condenser lens adjusts the currents of the plural probe spots. In the source-conversion unit, the image-forming means is on the upstream of the beamlet-limit means, and thereby generating less scattered electrons. The image-forming means not only forms the virtual multi-source array, but also compensates the off-axis aberrations of the plurality of probe spots.


Patent
MicroVision | Date: 2016-01-27

The device includes a beam source for generating an electron beam, a beam guiding tube passed through an objective lens, an objective lens for generating a magnetic field in the vicinity of the specimen to focus the particles of the particle beam on the specimen, a control electrode having a potential for providing a retarding field to the particle beam near the specimen to reduce the energy of the particle beam when the beam collides with the specimen, a deflection system including a plurality of deflection units situated along the optical axis for deflecting the particle beam to allow scanning on the specimen with large area, at least one of the deflection units located in the retarding field of the beam, the remainder of the deflection units located within the central bore of the objective lens, and a detection unit to capture secondary electron (SE) and backscattered electrons (BSE).

Loading MicroVision collaborators
Loading MicroVision collaborators