Entity

Time filter

Source Type

Bremen, Germany

Janssen S.,University of Bremen | Janssen S.,Microsystems Center Bremen | Janssen S.,Bremen Research Cluster for Dynamics in Logistics LogDynamics | Pankoke I.,Research Institute for Management and Beverage Logistics FIM | And 5 more authors.
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences | Year: 2014

Two important parameters are often neglected in the monitoring of perishable goods during transport: mould contamination of fresh food and the influence of acceleration or vibration on the quality of a product. We assert the claim that it is necessary to focus research on these two topics in the context of intelligent logistics in this opinion paper. Further, the technical possibilities for futuremeasurement systems are discussed. By measuring taste deviations, we verified the effect on the quality of beer at different vibration frequencies. The practical importance is shown by examining transport routes and market shares. The general feasibility of a mobile mould detection system is established by examining the measurement resolution of semiconductor sensors for mould-related gases. Furthermore, as an alternative solution, we present a concept for a miniaturized and automated culture-medium-based system. Although there is a lack of related research to date, new efforts canmake a vital contribution to the reduction of losses in the logistic chains for several products. © 2014 The Author(s) Published by the Royal Society. Source


Jedermann R.,University of Bremen | Nicometo M.,Iron Mountain | Uysal I.,University of South Florida | Lang W.,University of Bremen | And 2 more authors.
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences | Year: 2014

The need to feed an ever-increasing world population makes it obligatory to reduce the millions of tons of avoidable perishable waste along the food supply chain. A considerable share of these losses is caused by non-optimal cold chain processes and management. This Theme Issue focuses on technologies, models and applications to monitor changes in the product shelf life, defined as the time remaining until the quality of a food product drops below an acceptance limit, and to plan successive chain processes and logistics accordingly to uncover and prevent invisible or latent losses in product quality, especially following the first-expired-firstout strategy for optimized matching between the remaining shelf life and the expected transport duration. This introductory article summarizes the key findings of this Theme Issue, which brings together research study results from around the world to promote intelligent food logistics. The articles include three case studies on the cold chain for berries, bananas and meat and an overview of different post-harvest treatments. Further contributions focus on the required technical solutions, such as the wireless sensor and communication system for remote quality supervision, gas sensors to detect ethylene as an indicator of unwanted ripening and volatile components to indicate mould infections. The final section of this introduction discusses how improvements in food quality can be targeted by strategic changes in the food chain. © 2014 The Author(s) Published by the Royal Society. Source


Janssen S.,University of Bremen | Janssen S.,Microsystems Center Bremen | Janssen S.,Bremen Research Cluster for Dynamics in Logistics LogDynamics | Schmitt K.,Fraunhofer Institute for Physical Measurement Techniques | And 7 more authors.
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences | Year: 2014

Ethylene is a gaseous ripening phytohormone of fruits and plants. Presently, ethylene is primarily measured with stationary equipment in laboratories. Applying in situ measurement at the point of natural ethylene generation has been hampered by the lack of portable units designed to detect ethylene at necessary resolutions of a few parts per billion. Moreover, high humidity inside controlled atmosphere stores or containers complicates the realization of gas sensing systems that are sufficiently sensitive, reliable, robust and cost efficient. In particular, three measurement principles have shown promising potential for fruit supply chains and were used to develop independent mobile devices: nondispersive infrared spectroscopy, miniaturized gas chromatography and electrochemical measurement. In this paper, the measurement systems for ethylene are compared with regard to the needs in fruit logistics; i.e. sensitivity, selectivity, long-term stability,facilitation of automated measurement and suitability for mobile application. Resolutions of 20-10 ppb can be achieved in mobile applications with state-of-theart equipment, operating with the three methods described in the following. The prices of these systems are in a range below ε 10 000. © 2014 The Author(s) Published by the Royal Society. Source


Jedermann R.,University of Bremen | Jedermann R.,Microsystems Center Bremen | Praeger U.,Leibniz Institute for Agricultural Engineering | Geyer M.,Leibniz Institute for Agricultural Engineering | And 3 more authors.
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences | Year: 2014

Quality problems occurring during or after sea transportation of bananas in refrigerated containers are mainly caused by insufficient cooling and nonoptimal atmospheric conditions, but also by the heat generated by respiration activity. Tools to measure and evaluate these effects can largely help to reduce losses along the banana supply chain. The presented green life model provides a tool to predict the effect of deviating temperature, relative humidity, and CO2 and O2 gas concentrations on the storage stability of bananas. A second thermal model allows evaluation of the cooling efficiency, the effect of changes in packaging and stowage and the amount of respiration heat from the measured temperature curves. Spontaneous ripening causes higher respiration heat and CO2 production rate. The resulting risk for creation of hot spots increases in positions in which the respiration heat exceeds the available cooling capacity. In case studies on the transport of bananas from Costa Rica to Europe, we validated the models and showed how they can be applied to generate automated warning messages for containers with reduced banana green life or with temperature problems and also for remote monitoring of the ripening process inside the container. © 2014 The Author(s) Published by the Royal Society. Source


Jedermann R.,Institute for Microsensors | Jedermann R.,Microsystems Center Bremen | Potsch T.,University of Bremen | Potsch T.,Bremen Research Cluster for Dynamics in Logistics LogDynamics | And 2 more authors.
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences | Year: 2014

Remote measurement of product core temperature is an important prerequisite to improve the cool chain of food products and reduce losses. This paper examines and shows possible solutions to technical challenges that still hinder practical applications of wireless sensor networks in the field of food transport supervision. The high signal attenuation by water-containing products limits the communication range to less than 0.5m for the commonly used 2.4GHz radio chips. By theoretical analysis of the dependency of signal attenuation on the operating frequency, we show that the signal attenuation can be largely reduced by the use of 433MHz or 866MHz devices, but forwarding of messages over multiple hops inside a sensor network is mostly unavoidable to guarantee full coverage of a packed container. Communication protocols have to provide compatibility with widely accepted standards for integration into the global Internet, which has been achieved by programming an implementation of the constrained application protocol for wireless sensor nodes and integrating into IPv6-based networks. The sensor's battery lifetime can be extended by optimizing communication protocols and by in-network preprocessing of the sensor data. The feasibility of remote freight supervision was demonstrated by our full-scale 'Intelligent Container' prototype. © 2014 The Author(s) Published by the Royal Society. Source

Discover hidden collaborations