Time filter

Source Type

Wageningen, Netherlands

Wientjes E.,VU University Amsterdam | Wientjes E.,ICFO - Institute of Photonic Sciences | Van Amerongen H.,Wageningen University | Van Amerongen H.,MicroSpectroscopy Center | Croce R.,VU University Amsterdam
Journal of Physical Chemistry B | Year: 2013

We have studied thylakoid membranes of Arabidopsis thaliana acclimated to different light conditions and have related protein composition to excitation energy transfer and trapping kinetics in Photosystem II (PSII). In high light: the plants have reduced amounts of the antenna complexes LHCII and CP24, the overall trapping time of PSII is only ∼180 ps, and the quantum efficiency reaches a value of 91%. In low light: LHCII is upregulated, the PSII lifetime becomes ∼310 ps, and the efficiency decreases to 84%. This difference is largely caused by slower excitation energy migration to the reaction centers in low-light plants due to the LHCII trimers that are not part of the C 2S2M2 supercomplex. This pool of "extra" LHCII normally transfers energy to both photosystems, whereas it transfers only to PSII upon far-red light treatment (state 1). It is shown that in high light the reduction of LHCII mainly concerns the LHCII-M trimers, while the pool of "extra" LHCII remains intact and state transitions continue to occur. The obtained values for the efficiency of PSII are compared with the values of Fv/Fm, a parameter that is widely used to indicate the PSII quantum efficiency, and the observed differences are discussed. © 2013 American Chemical Society.

Wientjes E.,University of Groningen | Van Stokkum I.H.M.,VU University Amsterdam | Van Amerongen H.,Wageningen University | Van Amerongen H.,MicroSpectroscopy Center | And 2 more authors.
Biophysical Journal | Year: 2011

In this work, we have investigated the role of the individual antenna complexes and of the low-energy forms in excitation energy transfer and trapping in Photosystem I of higher plants. To this aim, a series of Photosystem I (sub)complexes with different antenna size/composition/absorption have been studied by picosecond fluorescence spectroscopy. The data show that Lhca3 and Lhca4, which harbor the most red forms, have similar emission spectra (λ max = 715-720 nm) and transfer excitation energy to the core with a relative slow rate of ∼25/ns. Differently, the energy transfer from Lhca1 and Lhca2, the "blue" antenna complexes, occurs about four times faster. In contrast to what is often assumed, it is shown that energy transfer from the Lhca1/4 and the Lhca2/3 dimer to the core occurs on a faster timescale than energy equilibration within these dimers. Furthermore, it is shown that all four monomers contribute almost equally to the transfer to the core and that the red forms slow down the overall trapping rate by about two times. Combining all the data allows the construction of a comprehensive picture of the excitation-energy transfer routes and rates in Photosystem I. © 2011 Biophysical Society.

Wientjes E.,University of Groningen | Van Stokkum I.H.M.,VU University Amsterdam | Van Amerongen H.,Wageningen University | Van Amerongen H.,MicroSpectroscopy Center | Croce R.,University of Groningen
Biophysical Journal | Year: 2011

Photosystem I (PSI) plays a major role in the light reactions of photosynthesis. In higher plants, PSI is composed of a core complex and four outer antennas that are assembled as two dimers, Lhca1/4 and Lhca2/3. Time-resolved fluorescence measurements on the isolated dimers show very similar kinetics. The intermonomer transfer processes are resolved using target analysis. They occur at rates similar to those observed in transfer to the PSI core, suggesting competition between the two transfer pathways. It appears that each dimer is adopting various conformations that correspond to different lifetimes and emission spectra. A special feature of the Lhca complexes is the presence of an absorption band at low energy, originating from an excitonic state of a chlorophyll dimer, mixed with a charge-transfer state. These low-energy bands have high oscillator strengths and they are superradiant in both Lhca1/4 and Lhca2/3. This challenges the view that the low-energy charge-transfer state always functions as a quencher in plant Lhc's and it also challenges previous interpretations of PSI kinetics. The very similar properties of the low-energy states of both dimers indicate that the organization of the involved chlorophylls should also be similar, in disagreement with the available structural data. © 2011 by the Biophysical Society.

Wientjes E.,VU University Amsterdam | Van Amerongen H.,Wageningen University | Van Amerongen H.,MicroSpectroscopy Center | Croce R.,VU University Amsterdam
Biochimica et Biophysica Acta - Bioenergetics | Year: 2013

LHCII, the most abundant membrane protein on earth, is the major light-harvesting complex of plants. It is generally accepted that LHCII is associated with Photosystem II and only as a short-term response to overexcitation of PSII a subset moves to Photosystem I, triggered by its phosphorylation (state1 to state2 transition). However, here we show that in most natural light conditions LHCII serves as an antenna of both Photosystem I and Photosystem II and it is quantitatively demonstrated that this is required to achieve excitation balance between the two photosystems. This allows for acclimation to different light intensities simply by regulating the expression of LHCII genes only. It is demonstrated that indeed the amount of LHCII that is bound to both photosystems decreases when growth light intensity increases and vice versa. Finally, time-resolved fluorescence measurements on the photosynthetic thylakoid membranes show that LHCII is even a more efficient light harvester when associated with Photosystem I than with Photosystem II. © 2013 Elsevier B.V.

Passarini F.,University of Groningen | Wientjes E.,University of Groningen | van Amerongen H.,Wageningen University | van Amerongen H.,MicroSpectroscopy Center | Croce R.,University of Groningen
Biochimica et Biophysica Acta - Bioenergetics | Year: 2010

In this work we have investigated the origin of the multi-exponential fluorescence decay and of the short excited-state lifetime of Lhca4. Lhca4 is the antenna complex of Photosystem I which accommodates the red-most chlorophyll forms and it has been proposed that these chlorophylls can play a role in fluorescence quenching. Here we have compared the fluorescence decay of Lhca4 with that of several Lhca4 mutants that are affected in their red form content. The results show that neither the multi-exponentiality of the decay nor the fluorescence quenching is due to the red forms. The data indicate that Lhca4 exists in multiple conformations. The presence of the red forms, which are very sensitive to changes in the environment, allows to spectrally resolve the different conformations: a "blue" conformation with a short lifetime and a "red" one with a long lifetime. This finding strongly supports the idea that the members of the Lhc family are able to adopt different conformations associated with their light-harvesting and photoprotective roles. The ratio between the conformations is modified by the substitution of lutein by violaxanthin. Finally, it is demonstrated that the red forms cannot be present in the quenched conformation. © 2010 Elsevier B.V.

Discover hidden collaborations