Entity

Time filter

Source Type

Ashdod, Israel

Gamliel-Atinsky E.,University of Georgia | Freeman S.,Israel Agricultural Research Organization | Maymon M.,Israel Agricultural Research Organization | Belausov E.,Microscopy Unit | And 5 more authors.
Experimental and Applied Acarology | Year: 2010

A considerable number of plant feeding mites representing different families such as Acaridae, Siteroptidae, Tydeidae, and Tarsonemidae interact with plant pathogenic fungi. While species within the Eriophyoidea appear to be the most common phytophagous mites vectoring virus diseases, little is known of their role in fungal pathogen epidemiology. In the present article, we present two studies on eriophyoid-fungal relationships. The first focusing on the association between Aceria mangiferae and the fungal pathogen Fusarium mangiferae in mango is presented as a case study. The second, as the research is still in a preliminary phase, reports on quantitative and descriptive associations between the cereal rust mite Abacarus hystrix and rusts caused by Puccinia spp. Mango bud tissue colonized with F. mangiferae, and wheat and quackgrass leaves colonized with Puccinia spp., supported significantly higher populations of eriophyoid mites. Both mite species were observed bearing the spores of the respective pathogens on their body integument. Aceria mangiferae vectored the pathogen's spores into the bud, the sole port of entry for the fungal pathogen and the frequency and severity of fungal infection increased in the presence of A. mangiferae. While it appears that eriophyoids are playing a role in fungal epidemiology, clearly further research is needed to enhance our understanding of direct and indirect (plant mediated) interactions between plant pathogens and eriophyoid mites in different plant-pathogen systems. © 2009 Springer Science+Business Media B.V. Source


Alisi A.,Hepato metabolic Disease Unit and Liver Research Unit | Ceccarelli S.,Hepato metabolic Disease Unit and Liver Research Unit | Panera N.,Hepato metabolic Disease Unit and Liver Research Unit | Prono F.,Hepato metabolic Disease Unit and Liver Research Unit | And 7 more authors.
PLoS ONE | Year: 2013

Atypical fibroblast growth factors (FGF) 21 and 19 play a central role in energy metabolism through the mediation of Klotho coreceptor. Contradictory findings are available about the association of FGF21 and FGF19 with nonalcoholic fatty liver disease (NAFLD) in humans. We investigated the association of serum FGF21, FGF19 and liver Klotho coreceptor with non-alcoholic steatohepatitis (NASH) and fibrosis in children with NAFLD. Serum FGF21 and FGF19 were measured in 84 children with biopsy-proven NAFLD and 23 controls (CTRL). The hepatic expression of Klotho coreceptor was measured in 7 CTRL, 9 patients with NASH (NASH+) and 11 patients without NASH (NASH-). FGF21 and FGF19 showed a tendency to decrease from CTRL (median FGF21 = 196 pg/mL; median FGF19 = 201 pg/mL) to NASH- (FGF21 = 89 pg/mL; FGF19 = 81 pg/mL) to NASH+ patients (FGF21 = 54 pg/mL; FGF19 = 41 pg/mL) (p<0.001 for all comparisons) and were inversely associated with the probability of NASH and fibrosis in children with NAFLD. The hepatic expression of Klotho coreceptor was inversely associated with NASH (R2 = 0.87, p<0.0001) and directly associated with serum FGF21 (R2 = 0.57, p<0.0001) and FGF19 (R2 = 0.67, p<0.0001). In conclusion, serum FGF19 and FGF21 and hepatic Klotho expression are inversely associated with hepatic damage in children with NAFLD and these findings may have important implications for understanding the mechanisms of NAFLD progression. © 2013 Alisi et al. Source


Ramella N.A.,CONICET | Ramella N.A.,National University of La Plata | Rimoldi O.J.,CONICET | Rimoldi O.J.,National University of La Plata | And 11 more authors.
PLoS ONE | Year: 2011

Amyloidoses constitute a group of diseases in which soluble proteins aggregate and deposit extracellularly in tissues. Nonhereditary apolipoprotein A-I (apoA-I) amyloid is characterized by deposits of nonvariant protein in atherosclerotic arteries. Despite being common, little is known about the pathogenesis and significance of apoA-I deposition. In this work we investigated by fluorescence and biochemical approaches the impact of a cellular microenvironment associated with chronic inflammation on the folding and pro-amyloidogenic processing of apoA-I. Results showed that mildly acidic pH promotes misfolding, aggregation, and increased binding of apoA-I to extracellular matrix elements, thus favoring protein deposition as amyloid like-complexes. In addition, activated neutrophils and oxidative/proteolytic cleavage of the protein give rise to pro amyloidogenic products. We conclude that, even though apoA-I is not inherently amyloidogenic, it may produce non hereditary amyloidosis as a consequence of the pro-inflammatory microenvironment associated to atherogenesis. © 2011 Ramella et al. Source


Garcia-Beccaria M.,Telomeres and Telomerase Group | Martinez P.,Telomeres and Telomerase Group | Mendez-Pertuz M.,Telomeres and Telomerase Group | Martinez S.,Spanish National Cancer Research Center | And 9 more authors.
EMBO Molecular Medicine | Year: 2015

Telomeres are considered anti-cancer targets, as telomere maintenance above a minimum length is necessary for cancer growth. Telomerase abrogation in cancer-prone mouse models, however, only decreased tumor growth after several mouse generations when telomeres reach a critically short length, and this effect was lost upon p53 mutation. Here, we address whether induction of telomere uncapping by inhibition of the TRF1 shelterin protein can effectively block cancer growth independently of telomere length. We show that genetic Trf1 ablation impairs the growth of p53-null K-RasG12V-induced lung carcinomas and increases mouse survival independently of telomere length. This is accompanied by induction of telomeric DNA damage, apoptosis, decreased proliferation, and G2 arrest. Long-term whole-body Trf1 deletion in adult mice did not impact on mouse survival and viability, although some mice showed a moderately decreased cellularity in bone marrow and blood. Importantly, inhibition of TRF1 binding to telomeres by small molecules blocks the growth of already established lung carcinomas without affecting mouse survival or tissue function. Thus, induction of acute telomere uncapping emerges as a potential new therapeutic target for lung cancer. © 2015 The Authors. Published under the terms of the CC BY 4.0 license. Source


Groult H.,CIBER ISCIII | Ruiz-Cabello J.,CIBER ISCIII | Ruiz-Cabello J.,Complutense University of Madrid | Pellico J.,CIBER ISCIII | And 8 more authors.
Bioconjugate Chemistry | Year: 2015

Multifunctional nanoparticles are usually produced by sequential synthesis, with long multistep protocols. Our study reports a generic modular strategy for the parallel one-step multifunctionalization of different hydrophobic nanoparticles. The method was designed and developed by taking advantage of the natural noncovalent interactions between the fatty acid binding sites of the bovine serum albumin (BSA) and the aliphatic surfactants on different inorganic nanomaterials. As a general example of the approach, three different nanoparticles-iron oxide, upconverting nanophosphors, and gold nanospheres-were nanoemulsified in water with BSA. To support specific applications, multifunctional capability was incorporated with a variety of previously modified BSA modules. These modules include different conjugated groups, such as chelating agents for 68Ga or 89Zr and ligand molecules for enhanced in vivo targeting. A large library of 13 multimodal contrast agents was developed with this convergent strategy. This platform allows a highly versatile and easy tailoring option for efficient incorporation of functional groups. Finally, as demonstration of this versatility, a bimodal (PET/MRI) probe including a maleimide-conjugated BSA was selectively synthesized with an RGD peptide for in vivo imaging detection of tumor angiogenesis. © 2014 American Chemical Society. Source

Discover hidden collaborations