Micronics Inc.

Redmond, WA, United States

Micronics Inc.

Redmond, WA, United States
SEARCH FILTERS
Time filter
Source Type

Method and apparatus for lamination of substrates, e.g. rigid plastic layers, to manufacture laminated products. The methods include the sequential application of vacuum and mechanical force through a two-stroke process performed by a lamination apparatus having one or more force-producing stroke cylinders. Actuation of a cylinder to produce a first stroke creates a sealed chamber within the apparatus, enclosing a stack of substrates to be laminated. The sealed chamber may be evacuated of air by application of a vacuum. Subsequent actuation of a cylinder to produce a second stroke applies mechanical force to the sealed chamber, which compresses the substrates into a laminated product substantially free of air bubbles or voids.


Method and apparatus for lamination of substrates, e.g. rigid plastic layers, to manufacture laminated products. The methods include the sequential application of vacuum and mechanical force through a two-stroke process performed by a lamination apparatus having one or more force-producing stroke cylinders. Actuation of a cylinder to produce a first stroke creates a sealed chamber within the apparatus, enclosing a stack of substrates to be laminated. The sealed chamber may be evacuated of air by application of a vacuum. Subsequent actuation of a cylinder to produce a second stroke applies mechanical force to the sealed chamber, which compresses the substrates into a laminated product substantially free of air bubbles or voids.


Disclosed is a microassay testing system, including a microfluidic cartridge and a compact microprocessor-controlled instrument for fluorometric assays in liquid samples, the cartridge having integrated process controls and positive and negative assay controls. The instrument has a scanning detector head incorporating multiple optical channels. In a preferred configuration, the assay is validated using dual channel optics for monitoring a first fluorophore associated with a target analyte and a second fluorophore associated with a process control. Integrated positive and negative assay controls provide enhanced assay validation capabilities and facilitate analysis of test results. Applications include molecular biological assays based on PCR amplification of target nucleic acids and fluorometric assays in general.


Disclosed is a microassay testing system, including a microfluidic cartridge and a compact microprocessor-controlled instrument for fluorometric assays in liquid samples, the cartridge having integrated process controls and positive and negative assay controls. The instrument has a scanning detector head incorporating multiple optical channels. In a preferred configuration, the assay is validated using dual channel optics for monitoring a first fluorophore associated with a target analyte and a second fluorophore associated with a process control. Integrated positive and negative assay controls provide enhanced assay validation capabilities and facilitate analysis of test results. Applications include molecular biological assays based on PCR amplification of target nucleic acids and fluorometric assays in general.


Microfluidic cartridges or devices for serum separation and blood cross-match analysis are provided. The devices may include a serum separation subcircuit alone or in combination with a solute mixing subcircuit. The serum separation subcircuit promotes on-cartridge clotting of a blood sample and manipulates the flow of the separated serum sample for subsequent cross-match analysis with a second blood sample, for example. The solute mixing subcircuit includes at least two intake channels, one for a whole blood sample from, for example, a blood donor and the other for the separated serum sample from, for example, a transfusion recipient. The solute mixing subcircuit further includes a serpentine mixing channel conjoined to a downstream channel. Under vacuum generated by a conjoined finger pump, the two input streams fill the serpentine mixing and downstream channels due to capillary action, enabling visualization of an agglutination reaction.


Patent
Micronics Inc. | Date: 2014-02-14

The present invention relates to microfluidic devices and methods for manipulating and analyzing fluid samples. The disclosed microfluidic devices utilize a plurality of microfluidic channels, inlets, valves, filter, pumps, liquid barriers and other elements arranged in various configurations to manipulate the flow of a fluid sample in order to prepare such sample for analysis.


Patent
Micronics Inc. | Date: 2015-08-05

A microfluidic cartridge and methods for performing a diagnostic, molecular or biochemical assay thereon, where all dried and/or liquid reagents necessary for the assay are contained in the cartridge and the assay requires only the addition of sample. Pneumohydraulic features, chamber and diaphragm technologies are introduced for overcoming the problems of bubble interference and reagent washout during operation of a microfluidic cartridge. The cartridges are inserted into a host instrument for performance of an assay and the cartridge is supplied as a consumable.


Patent
Micronics Inc. | Date: 2015-01-30

Microfluidic methods and devices for heterogeneous binding and agglutination assays are disclosed, with improvements relating to mixing and to reagent and sample manipulation in systems designed for safe handling of clinical test samples.


Manufacturing methods and compositions are described for production of self-contained microfluidic cartridge devices with on-board reagents for molecular biological testing. Sensitive reagents are stored in dry form without lyophilization or freezing, and reconstituted at the point of use with either a biological sample or a sample eluate at the point of use. Manufacturing methods include sheet and roll fabrication processes where the reagents are printed in place and sealed within individual microfluidic cartridges before gel vitrification.


Microfluidic cartridges for agglutination reactions are provided. The cartridges include a microfluidic reaction channel with at least two intake channels, one for an antigen-containing fluid and the other for an antibody-containing fluid, conjoined to a reaction channel modified by incorporation of a downstream flow control channel. At low Reynolds Number, the two input streams layer one on top of the other in the reaction channel and form a flowing, unmixed horizontally-stratified laminar fluid diffusion (HLFD) interface for an extended duration of reaction. Surprisingly, the design, surface properties, and flow regime of microfluidic circuits of the present invention potentiate detection of antibody mediated agglutination at the stratified interface. Antigen:antibody reactions involving agglutination potentiated by these devices are useful in blood typing, in crossmatching for blood transfusion, and in immunodiagnostic agglutination assays, for example.

Loading Micronics Inc. collaborators
Loading Micronics Inc. collaborators