Chicago, IL, United States
Chicago, IL, United States

Time filter

Source Type

Creighton E.,Microlution Inc. | Honegger A.,Microlution Inc. | Tulsian A.,Microlution Inc. | Mukhopadhyay D.,Microlution Inc.
International Journal of Machine Tools and Manufacture | Year: 2010

Thermally induced errors account for the majority of fabrication accuracy loss in an uncompensated machine tool. This issue is particularly relevant in the micro-machining arena due to the comparable size of thermal errors and the characteristic dimensions of the parts under fabrication. A spindle of a micro-milling machine tool is one of the main sources of thermal errors. Other sources of thermal errors include drive elements like linear motors and bearings, the machining process itself and external thermal influences such as variation in ambient temperature. The basic strategy for alleviating the magnitude of these thermal errors can be achieved by thermal desensitization, control and compensation within the machine tool. This paper describes a spindle growth compensation scheme that aims towards reducing its thermally-induced machining errors. The implementation of this scheme is simple in nature and it can be easily and quickly executed in an industrial environment with minimal investment of manpower and component modifications. Initially a finite element analysis (FEA) is conducted on the spindle assembly. This FEA correlates the temperature rise, due to heating from the spindle bearings and the motor, to the resulting structural deformation. Additionally, the structural deformation of the spindle along with temperature change at its various critical points is experimentally obtained by a system of thermocouples and capacitance gages. The experimental values of the temperature changes and the structural deformation of the spindle qualitatively agree well with the results obtained by FEA. Consequently, a thermal displacement model of the high-speed micro-milling spindle is formulated from the previously obtained experimental results that effectively predict the spindle displacement under varying spindle speeds. The implementation of this model in the machine tool under investigation is expected to reduce its thermally induced spindle displacement by 80%, from 6 microns to less than 1 micron in a randomly generated test with varying spindle speeds. © 2009 Elsevier Ltd.


Patent
Microlution Inc. | Date: 2014-04-02

A machine tool accessory including a monolithic flexure travel guide, a motor, and a position feedback sensor is provided. The machine tool accessory also includes an accessory tool spindle configured to rotate a tool, the accessory tool spindle being disposed within the monolithic flexure travel guide. The motor is configured to move the monolithic flexure travel guide, and the position feedback sensor is configured to measure position of the monolithic flexure travel guide. In some embodiments, the machine tool accessory further includes a controller configured to (i) communicatively couple to the motor, (ii) communicatively couple to one or more external devices, and (iii) cause the motor to move the accessory tool spindle in response to signals received from the one or more external devices.


Grant
Agency: NSF | Branch: Standard Grant | Program: | Phase: | Award Amount: 150.00K | Year: 2011

This Small Business Innovation Research (SBIR) Phase I project will enable the manufacture of Sharklet patterns on metallic surfaces. A Sharklet pattern is an engineered micro-surface texture that mimics the texture of shark skin and inhibits bacterial biofilm growth without the use of anti-microbial agents. The Sharklet surface texture technology has been successfully produced in soft materials using photolithographic methods but its extension to metals-based applications has been inhibited by the absence of a suitable manufacturing process. This project will demonstrate feasibility of a micro-grooving process. The efficacy of the micro-grooving process will be proved by machining the Sharklet pattern in steel dies, thereby facilitating the transfer of the Sharklet pattern to metal surfaces for testing.

The commercial potential of this project is a significant reduction in hospital-borne infections, the 4th leading cause of death in United States. The estimated market size of such patterned metallic surfaces in the healthcare sector alone is $8.6 billion. Additional markets benefiting from this technology include energy, marine (exceeding $450 million/year), and space exploration. In addition, the presence of a micro-grooving process capability at the micron size scale will enable high-performance cooling solutions for defense and electronics industries that are experiencing a strong need for making smaller and more tightly spaced channels in their cooling devices to significantly enhance their thermal performance. Additionally, many micro-machining centers are machining 3D channels with 50-100 micron channel widths for micro-fluidics research. The ability to make channels and grooves below or near 1 micron in width will enable cutting-edge micro-fluidics researchers to explore additional fundamental fluidics phenomena at 3D micro-/nano-scales at a reduced cost footprint, compared to using conventional (2D geometry-limited) and expensive MEMS-based etching processes.


Patent
Microlution Inc. | Date: 2014-03-12

A machine tool having a monolithic base is disclosed. The monolithic base includes at least two flat surfaces that are mutually orthogonal and that are convex with respect to each other. The machine tool includes at least two moveable stages, each mounted to one of the flat surfaces, and each stage also being mutually orthogonal.


Patent
Microlution Inc. | Date: 2015-07-16

A laser tube-cutting machine is disclosed. The tube-cutting machine may include a processing station where raw material enter the machine, a holding and positioning station configured to hold and position the raw material, at least one combined measurement and laser cutting station including a laser and at least one sensor configured to measure various aspects of the tube both before and after cutting, and an outflow processing station where cut material exit the machine.


Patent
Microlution Inc. | Date: 2014-12-03

The present disclosure is directed toward a machine tool configured to perform small-scale, high-accuracy drilling operations for small-hole applications. The small-hole applications for which the machine tool is designed includes holes with one or more diameters. A part may have a larger-diameter hole that penetrates through a fraction of the thickness of a part and a smaller-diameter hole that penetrates from the bottom of the larger-diameter hole through the remainder of the part thickness. Additionally, the machine tool may be used with parts in any of the following categories: (i) both the step-hole and the flow-hole are created using the machine tool; or, (ii) the step-hole is created with an up-stream process and the machine tool may accept the part, measure the step-holes and create the flow-holes; or, (iii) no step-hole is used and the machine tool may accept the part, measure the raw surface and create the flow-holes.


Grant
Agency: National Science Foundation | Branch: | Program: SBIR | Phase: Phase I | Award Amount: 150.00K | Year: 2011

This Small Business Innovation Research (SBIR) Phase I project will enable the manufacture of Sharklet patterns on metallic surfaces. A Sharklet pattern is an engineered micro-surface texture that mimics the texture of shark skin and inhibits bacterial biofilm growth without the use of anti-microbial agents. The Sharklet surface texture technology has been successfully produced in soft materials using photolithographic methods but its extension to metals-based applications has been inhibited by the absence of a suitable manufacturing process. This project will demonstrate feasibility of a micro-grooving process. The efficacy of the micro-grooving process will be proved by machining the Sharklet pattern in steel dies, thereby facilitating the transfer of the Sharklet pattern to metal surfaces for testing. The commercial potential of this project is a significant reduction in hospital-borne infections, the 4th leading cause of death in United States. The estimated market size of such patterned metallic surfaces in the healthcare sector alone is $8.6 billion. Additional markets benefiting from this technology include energy, marine (exceeding $450 million/year), and space exploration. In addition, the presence of a micro-grooving process capability at the micron size scale will enable high-performance cooling solutions for defense and electronics industries that are experiencing a strong need for making smaller and more tightly spaced channels in their cooling devices to significantly enhance their thermal performance. Additionally, many micro-machining centers are machining 3D channels with 50-100 micron channel widths for micro-fluidics research. The ability to make channels and grooves below or near 1 micron in width will enable cutting-edge micro-fluidics researchers to explore additional fundamental fluidics phenomena at 3D micro-/nano-scales at a reduced cost footprint, compared to using conventional (2D geometry-limited) and expensive MEMS-based etching processes.


Trademark
Microlution Inc. | Date: 2016-05-09

Power tools, namely, milling machines, laser drilling machines, laser cutting machines, turning machines, hybrid milling and laser machines, all for the machining of workpieces.


Ultrafast precision micro hole drilling Precision micro holes have the potential to make exciting new technologies possible. Many of these new technologies depend on high accuracy control of the fluid flow and spray patterns ...


M

Trademark
Microlution Inc. | Date: 2016-05-10

Power tools, namely, milling machines, laser drilling machines, laser cutting machines, turning machines, hybrid milling and laser machines.

Loading Microlution Inc. collaborators
Loading Microlution Inc. collaborators