ChipShop, Germany
ChipShop, Germany

Time filter

Source Type

Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: ICT-26-2014 | Award Amount: 3.23M | Year: 2015

The SAPHELY project focuses on the development and the preclinical validation of a nanophotonic-based handheld point-of-care (POC) analysis device for its application to the minimally-invasive early diagnosis of diseases, with a focus in cancer. Disease identification will be based in the fast (<5 minutes), ultra-sensitive (sub-pM) and label-free detection of novel highly-specific microRNA (miRNA) biomarkers, using a small volume of whole blood (<100 L). This POC analysis device, which will have a low cost (envisaged cost < 3000), will significantly help in the implementation of mass screening programs, with the consequent impact on clinical management, reducing also costs of treatments, and increasing survival rates. The ultra-high sensitivity required for the direct detection of miRNA biomarkers present in the bloodstream will be achieved by using a novel sensing amplification technique. This technique is based in the use of molecular beacon capture probes with an attached high index nanoparticle, so that the hybridization events are translated into the displacement of these nanoparticles from the sensor surface. The use of this self-amplification technique avoids the use of complex PCR-based amplification methods or labelling processes, which are difficult to implement on-chip. The cost, size and weight reduction required for deploying an affordable handheld POC device will be achieved by using a novel power-based readout scheme for photonic bandgap sensing structures where the use of expensive, bulky and heavy tuneable lasers and spectrometers is avoided. Special attention will be paid within the SAPHELY project to explore the potential deployment and commercialisation of the analysis device, by means of the involvement of relevant academic and industrial partners, as well as end users.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: ICT-02-2014 | Award Amount: 5.81M | Year: 2015

Screening for early detection of a disease is required to reveal groups of individuals from the general population in whom the likelihood of the disease is increased and who could benefit from further medical evaluation. The ideal screening test is high-accuracy, low-cost, non-invasive, easily repeatable, effortlessly operated by a lay-person and has minimal impact on the persons daily activities.. In the SNIFFPHONE project, we aim to tackle these requirements by integrating heterogeneous micro- and nano-technologies into autonomous smart system that can be attached to a mobile phone and analyze disease markers from exhaled breath. In this approach, an interaction between breath sample and a miniaturized array of highly sensitive nanomaterial-based chemical sensors is recorded, stored and pre-processed by integrated miniature on-chip microfluidics and electronics, and then the relevant electrical signals are transferred wirelessly via the mobile phones internet to an external server. Statistical pattern recognition methods are then applied on the received data and a clinical report including the screening results is sent back to the designated receiver (e.g., specialist, family doctor) in case of positive result is revealed. SNIFFPHONE represents a new concept addressing major societal challenges in health and well-being of the general population, while taking into account constituent ethical and security aspects. The SNIFFPHONE end-product will integrate functionalities that are relevant to the health screening applications with decreased size (x30-40), decreased costs (x150), increased predictive and cognitive functions and full autonomy with energy management as well as with operation/use management. Besides the R&D and clinical units, the SNIFFPHONE project will involve four European SMEs and one big industrial company, thus establishing European competitive ecosystems for the design and commercialization of innovative miniaturized smart systems.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: FCT-03-2015 | Award Amount: 4.78M | Year: 2016

The overall goal of ROCSAFE is to fundamentally change how CBRNe events are assessed, in order to and ensure the safety of crime scene investigators by reducing the need for them to enter high-risk scenes when they have to determine the nature of threats and gather forensics. For this, ROCSAFE will make use of cost-effective modern remotely-controlled robotic air and ground vehicles (RAVs/RGVs) that are designed for use in rain, wind, and challenging ground surfaces and obstacles. First, RAVs will assess the scene. These will have cameras and can carry an array of innovative new high-performance and rugged miniaturised sensor systems for RN, chemical and biological threats. To reduce the scene commanders cognitive load, ROCSAFE will include new Central Decision Management software and a Command Centre. All images and data will be streamed to this, where it will be analysed and displayed on a sophisticated and intuitive interface with maps and video, showing results of analytics and giving readings geographical context. This will enable the scene commander to assess the nature of threats, develop an Action Plan and an Evidence Plan, supported as needed by the Central Decision Management. It will also assist in coordinating sensors and mobile units. Its data analytics will provide fusion of multiple sensor data sources, to allow probabilistic reasoning about the most likely threats and likely locations of epicentres. After the scene is assessed, RGVs will be dispatched to collect forensic material/evidence, with automatically-optimised routes to avoid hazards. They will have innovative new equipment for forensics collection that will automate best practices. Forensic material will be collected, bagged, tagged, documented, and stored by the RGV. Thus, ROCSAFE will ensure that CBRNe scenes are assessed more rapidly and thoroughly than is currently possible, and that forensic evidence is collected in a manner that stands up in court, without putting personnel at risk.


Grant
Agency: Cordis | Branch: FP7 | Program: CP-FP | Phase: NMP.2012.1.4-2 | Award Amount: 4.86M | Year: 2013

The Self-Assembled Virus-like Vectors for Stem Cell Phenotyping (SAVVY) project relies on hierarchical, multi-scale assembly of intrinsically dissimilar nanoparticles to develop novel types of multifunctional Raman probes for analysis and phenotyping of heterogeneous stem cell populations. Our project will address a large unmet need, as stem cells have great potential for a broad range of therapeutic and biotechnological applications. Characterization and sorting of heterogeneous stem cell populations has been intrinsically hampered by (1) lack of specific antibodies, (2) need for fluorescence markers, (3) low concentration of stem cells, (4) low efficiencies/high costs. Our technology will use a fundamentally different approach that (1) does not require antibodies, aptamers, or biomarkers, (2) is fluorescence-label free, and (3) is scalable at acceptable cost. The approach uses intrinsic differences in the composition of membranes of cells to distinguish cell populations. These differences will be detect by SERS and analysed through multicomponent analysis. We have combined the necessary expertise to tackle this challenge: Stellacci has developed rippled nanoparticles that specifically interact with and adhere to cell membranes (analogues to cell penetrating peptides). Lahann has developed bicompartmental Janus polymer particles that have already been surface-modified with rippled particles and integrate specifically in the cell membrane (analogues to viruses). Liz-Marzan has developed highly Raman-active nanoparticles and has demonstrated their selectivity and specificity in SERS experiments. These Raman probes will be loaded into the synthetic viruses to enable membrane fingerprinting. Stevens has developed a Bioinformatics platform for fingerprinting of stem cell populations using cluster analysis algorithms. The effort will be joined by two SMEs, ChipShop and OMT, that will be able to develop the necessary microfluidic and Raman detection hardware.


Grant
Agency: Cordis | Branch: H2020 | Program: IA | Phase: ICT-29-2016 | Award Amount: 15.57M | Year: 2017

PIXAPP will establish the worlds first open access Photonic Integrated Circuit (PIC) assembly & packaging Pilot Line. It combines a highly-interdisciplinary team of Europes leading industrial & research organisations. PIXAPP provides Europes SMEs with a unique one-stop-shop, enabling them to exploit the breakthrough advantages of PIC technologies. PIXAPP bridges the valley of death, providing SMEs with an easy access route to take R&D results from lab to market, giving them a competitive advantage over global competition. Target markets include communications, healthcare & security, which are of great socio-economic importance to Europe. PIXAPPs manufacturing capabilities can support over 120 users per year, across all stages of manufacturing, from prototyping to medium scale manufacture. PIXAPP bridges missing gaps in the value chain, from assembly & packaging, through to equipment optimisation, test and application demonstration. To achieve these ambitious objectives, PIXAPP will; 1) Combine a group of Europes leading industrial & research organisations in an advanced PIC assembly & packaging Pilot Line facility.2) Develop an innovative Pilot Line operational model that coordinates activities between consortium partners & supports easy user access through a single entry point. 3) Establish packaging standards that provide cost-efficient assembly & packaging solutions, enabling transfer to full-scale industrial manufacture. 4) Create the highly-skilled workforce required to manage & operate these industrial manufacturing facilities.5) Develop a business plan to ensure Pilot Line sustainability & a route to industrial manufacturing. PIXAPP will deliver significant impacts to a wide stakeholder group, highlighting how industrial & research sectors can collaborate to address emerging socio-economic challenges.


Grant
Agency: Cordis | Branch: FP7 | Program: CP-IP | Phase: SEC-2012.1.5-1 | Award Amount: 36.02M | Year: 2013

The accidental or deliberate release of CBRNE materials are low probability events that can have a significant impact on citizens and society. Whenever and wherever they occur, they usually require a gradual and multi-facetted response as they tend to provoke severe and unexpected physical, psychological, societal, economical and political effects that cross EU-borders. Successful CBRNE resilience requires a global System-of-Systems approach. The EDEN project will leverage the added-value of tools and systems from previous R&D efforts and improve CBRNE resilience through their adaptation and integration. The concept of the EDEN project is to provide a toolbox of toolboxes EDEN Store to give stakeholders access to interoperable capabilities they deem important, or affordable, from a certified set of applications. It will share the burden of development and allows for lessons to be learned and applications to be enhanced. The benefit of the EDEN concept is that integration will be applied at the application level. This means that all countries and stakeholders, irrespective of their existing capability levels, will gain immediate advantages through improved interoperability. EDEN Store will allow capabilities to be shared among multi-national CBRNE stakeholders, which is paramount in cross-border incident management, and through time allow for a build up of common capability across European boundaries. EDEN will be validated by three themed end-user demonstrations (Food Industry, Multi Chemical, Radiological) covering multiple hazards (CBRNE), phases of the security cycle, response tiers, and stakeholders. The EDEN consortium includes CBRNE domain end-users, major stakeholders, large system integration and solution providers, including SMEs with innovative solutions, and RTOs. The impact of EDEN is to provide affordable CBRNE resilience and market sustainability through the better integration of systems in real operations and thus enhancing the safety of citizens.


Grant
Agency: Cordis | Branch: FP7 | Program: CP-TP | Phase: KBBE.2012.3.3-03 | Award Amount: 7.40M | Year: 2012

BIOINTENSE is directed at addressing the challenges of low productivity and process intensity frequently hampering the implementation of bioprocesses in industry. For the future of the next generation of chemical processes in Europe it provides the opportunity not only to address intensification but also to enable this in a rapid manner. BIOINTENSE will make use of -technology to develop economically feasible intensified processes by integration of separation and process control, and to create tools to speed up the characterization and assessment of different process options and technologies and biocatalysts for increased process intensity. A strong focus lies in increasing the scale of biocatalytic and cascade reactions and to improve the fundamental factors that affect the economic feasibility. Both numbering up and scale-up methodologies will be tested. The BIOINTENSE consortium is ideally suited to address the challenges in KBBE.2012.3.3-03 and to meet the objectives, as it spans across disciplines, academia and industry: SMEs with a strong technology base in the areas of integrating separation in bioprocessing, biocatalyst development, immobilization, -reactor fabrication, and on-line monitoring will ensure top of the line industry focused research with a strong focus on scale-up and implementation. There is an urgent need for these challenges to be overcome to move towards a European Knowledge Based BioEconomy to exploit the environmental savings and economic potential if such bioprocesses were in place. Building on the recent advances in molecular biology, the time is now right to develop the necessary process engineering methodologies and implementation strategies to unlock the full potential of bioprocesses.


Grant
Agency: Cordis | Branch: FP7 | Program: MC-ITN | Phase: FP7-PEOPLE-2013-ITN | Award Amount: 3.98M | Year: 2013

The objective is to deliver a trans-European network of industrially oriented specialists fully trained in the development and application of microbioreactor (MBR) technology to support development of innovative bio-based manufacturing processes. The specialistis will be trained by leaders in the field and with state of the art equipment and methodologies. MBRs are a promising tool for screening and scale-up of fermentation and biocatalysis processes due to their low production cost, small working volumes, flexibility and their potential for information-rich experiments under well-controlled experimental conditions. In this consortium, we will further develop MBRs for chemical and biochemical screening, paying special attention to MBR parallelization and applicability for different applications. In addition, characterization of experimental uncertainty, development of reactant feeding strategies at micro-scale and coupling of microscale experimentation to automated design of experiments (DoE) will document applicability of MBRs for chemical and biochemical research. To enhance the applicability of microfluidic enzymatic reactors for organic synthesis, we will establish microfluidic chemo-biocatalytic reaction systems that enable rapid characterization of biosynthetic pathways and chemo-enzymatic conversions. This will be underpinned with immobilization methods that permit rapid and reversible binding of a range of biocatalysts and modeling that relates the kinetic data with results from larger scales. Complemented with precisely positioned fluorescence-based sensor arrays, novel nanosensor particle concepts, and integrated Raman and NIR probes, the MBRs will deliver the data-rich experimentation needed for industrial applications. Data processing and information management will be accomplished by developing CFD and mathematical modeling methods that permit prediction and interpretation of fermentation and biocatalytic processes in MBRs.


Grant
Agency: Cordis | Branch: FP7 | Program: CP | Phase: ICT-2013.3.3 | Award Amount: 3.56M | Year: 2013

Pocket will develop a novel point-of-care (PoC) urine test for the detection of tuberculosis (TB), achieving at the same time a low cost (5 to 10 euro end-user cost per test, including depreciation cost of the instrument) and a high accuracy (>80% capture of TB-positive patients, which is much better than the present solutions which reach 60%). The test positions itself between current low-end immunological urine tests with limited accuracy and between high-end expensive nucleic-acid-based tests, which are not truly point-of-care. Throughout this project, special attention will be paid to both end-user requirements (performance, cost, ease-of-use, ...) and to manufacturability. Pocket will go well beyond the development of a mere laboratory prototype, as in the final year of the project, the instrument will be field-tested in Africa and India.\n\nThe combination of low cost and high accuracy will be achieved through a unique integration of several state-of-the-art concepts, which the partners have separately developed and of which the maturity has already been shown:\n\n-a nanophotonic transducer with integrated spectrum analyser developed by UGent (Vernier ring resonator cascade with arrayed waveguide grating spectrometer). This will enable us to eliminate the cost associated with the inclusion of a high-end tunable laser (20k euro) that typically plagues the competing approaches using resonant optical nanophotonic sensors.\n\n-a high-confinement silicon nitride (SiN) platform running in a mature small-volume CMOS fab (imec). The use of SiN as opposed to the more traditional Silicon-on-Insulator material system will enable us to move the operating wavelength from 1550 nm to 900 nm, where both the sources and the detectors are significantly less expensive.\n\n-a novel TB detection system, based on a unique combination of high-quality antibodies for two different biomarkers.


Grant
Agency: Cordis | Branch: FP7 | Program: CP | Phase: ICT-2013.3.3 | Award Amount: 5.30M | Year: 2014

Through further development, integration and validation of micro-nano-bio and biophotonics systems from previous projects CanDo will develop an instrument that will permit the identification and concentration determination of rare cells in peripheral blood for two key societal challenges, early and low cost anti-cancer drug efficacy determination and cancer diagnosis/monitoring.A cellular link between the primary malignant tumor and the peripheral metastases, responsible for 90% of cancer-related deaths, has been established in the form of circulating tumor cells (CTCs) in peripheral blood. Furthermore the relatively short survival time of CTCs in peripheral blood means that their detection is indicative of tumor progression thereby providing in addition to a prognostic value an evaluation of therapeutic efficacy and early recognition of tumor progression in theranostics. In cancer patients however blood concentrations are very low (=1 CTC/1E9 cells) and current detection strategies are too insensitive, limiting use to prognosis of only those with advanced metastatic cancer. Similarly problems occur in therapeutics with anti-cancer drug development leading to lengthy and costly trials often preventing access to market. There is therefore a clear need for a novel analytical platform capable of highly reproducible and reliable identification of CTC concentrations of interest in an easily accessible format.With all relevant industrial stakeholders and users onboard CanDo is uniquely capable of delivering such a platform. Its novel cell separation/SERS analysis technologies plus nucleic acid based molecular characterization will provide an accurate CTC count with high throughput and high yield meeting both key societal challenges. Being beyond the state of art it will lead to substantial share gains not just in the high end markets of drug discovery and cancer diagnostics but due to modular technologies in others e.g. transport, security and safety and environment.

Loading Microfluidic ChipShop GmbH collaborators
Loading Microfluidic ChipShop GmbH collaborators