Time filter

Source Type

Ronholm J.,Microbiology Research Division | Petronella N.,Bureau of Food Surveillance and Science Integration | Tamber S.,Microbiology Research Division
Genome Announcements | Year: 2016

A 2014 foodborne salmonellosis outbreak in Canada and the United States implicated, for the first time, sprouted chia seed powder as the vehicle of transmission. Here, we report the draft whole genome sequences of two Salmonella enterica strains isolated from sprouted powders related to the aforementioned outbreak. © Crown copyright 2016.


Ronholm J.,Microbiology Research Division | Petronella N.,Bureau of Food Surveillance and Science Integration | Tamber S.,Microbiology Research Division
Genome Announcements | Year: 2016

The diversity of the genus Salmonella is reflected in the physiological adaptations used by its members in response to stressors such as high pressure. Here we report the draft whole genome sequences of 11 Salmonella enterica strains, five sensitive strains and six demonstrating high levels of pressure resistance. © Crown copyright 2016.


Bin Kingombe C.I.,Microbiology Research Division | D'Aoust J.-Y.,Microbiology Research Division | Huys G.,Ghent University | Hofmann L.,Microbiology Research Division | And 2 more authors.
Applied and Environmental Microbiology | Year: 2010

A novel multiplex PCR method using three sets of specific primers was developed for the detection of the cytotoxic (act), heat-labile (alt), and heat-stable (ast) enterotoxin genes in Aeromonas spp. This assay was used to characterize 35 reference strains as well as 537 food-borne isolates. A total of seven gene pattern combinations were encountered, including act, alt, act/alt, act/alt/ast, act/alt/148-bp amplicon, alt/ast,and alt/alt/148-bp amplicon. The alt gene was detected with 34 reference strains (97%) and occurred singly in 14% of these strains. The frequency of occurrence of the act/alt, act/alt/ast, and alt/ast gene patterns in reference strains was 14 (40%), 2 (6%), and 2 (6%), respectively. An unpredicted amplicon was detected in 11 reference strains (31%). Characterization of this amplicon showed that its size was 148 bp, as generated by the AHLF and AHLR primers, and that it uniquely aligned with the Aeromonas salmonicida A449 genome sequence (GenBank accession number CP000644). This amplicon was named Aeromonas salmonicida subsp. salmonicida hypothetical protein amplicon (AssHPA). In the 537 food-borne isolates, the act and alt genes were most dominant and were detected in 349 (65%) and 452 (84%) isolates, respectively, either alone or in combinations. The act and alt genes occurred singly in 30 (6%) and 128 (24%) of these strains, respectively. The act/alt gene pattern occurred in 315 isolates (59%), whereas the ast gene was always linked to strains exhibiting the act/alt/ast and alt/ast gene combinations in 4 (0.7%) and 5 (0.9%) isolates, respectively. The uniplex amplification of three enterotoxin genes separately confirms the specificity of the unique selected primers. This multiplex PCR is rapid and simple and can detect the presence of three Aeromonas enterotoxin genes in a single assay. Copyright © 2010, American Society for Microbiology. All Rights Reserved.


Liu Y.,University of Alberta | Gill A.,Microbiology Research Division | McMullen L.,University of Alberta | Ganzle M.G.,University of Alberta | Ganzle M.G.,Hubei Engineering University
Journal of Food Protection | Year: 2015

This study evaluated the heat and pressure resistance of 112 strains of Escherichia coli, including 102 strains of verotoxigenic E. coli (VTEC) representing 23 serotypes and four phylogenetic groups. In an initial screening, the heat and pressure resistance of 100 strains, including 94 VTEC strains, were tested in phosphate-buffered saline (PBS). Treatment at 60°C for 5 min reduced cell counts by 2.0 to 5.5 log CFU/ml; treatment at 600 MPa for 3 min at 25°C reduced the cell counts by 1.1 to 5.5 log CFU/ml. Heat or pressure resistance did not correlate to the phylogenetic group or the serotype. A smaller group of E. coli strains was evaluated for heat and pressure resistance in Luria-Bertani (LB) broth. Generally, the levels of heat resistance of E. coli strains in LB and PBS were similar; however, the levels of pressure resistance observed for treatments in LB broth or PBS were variable. The cell counts of pressure-resistant strains of VTEC were reduced by less than 1.5 log CFU/ml after treatment at 600 MPa for 3 min. E. coli strains were also treated with 600 MPa for 3 min in ground beef or inoculated into beef patties and grilled to 63 or 71°C. The cell counts of the VTEC E. coli O26:H11 strain 05-6544 were reduced by 2 log CFU/g by pressure treatment in ground beef. The cell counts of the heat-resistant E. coli strain AW1.7 were reduced by 1.4 and 3.4 log CFU/g in beef patties grilled to internal temperatures of 63 and 71°C, respectively. The cell counts of E. coli 05-6544 were reduced by less than 3 and 6 log CFU/g in beef patties grilled to internal temperatures of 63 and 71°C, respectively. To study whether the composition of the beef patties influenced heat resistance, E. coli strains AW1.7, AW1.7ΔpHR1, MG1655, and LMM1030 were mixed into beef patties containing 15 or 35% fat and 0 or 2% NaCl, and the patties were grilled to an internal temperature of 63°C. The highest heat resistance of E. coli was observed in patties containing 15% fat and 2% NaCl. Copyright ©, International Association for Food Protection


Budu-Amoako E.,University of Prince Edward Island | Greenwood S.J.,University of Prince Edward Island | Dixon B.R.,Microbiology Research Division | Barkema H.W.,University of Calgary | McClure J.T.,University of Prince Edward Island
Journal of Food Protection | Year: 2011

Waterborne outbreaks caused by Cryptosporidium and Giardia are well documented, while the public health implications for foodborne illness from these parasites have not been adequately considered. Cryptosporidium and Giardia are common in domestic livestock, where young animals can have a high prevalence of infection, shedding large numbers of oocysts and cysts. Molecular epidemiological studies have advanced our knowledge on the distribution of Cryptosporidium and Giardia species and genotypes in specific livestock. This has enabled better source tracking of contaminated foods. Livestock generate large volumes of fecal waste, which can contaminate the environment with (oo)cysts. Evidence suggests that livestock, particularly cattle, play a significant role in food contamination, leading to outbreaks of cryptosporidiosis. However, foodborne giardiasis seems to originate primarily from anthroponotic sources. Foodborne cryptosporidiosis and giardiasis are underreported because of the limited knowledge of the zoonotic potential and public health implications. Methods more sensitive and cheaper are needed to detect the often-low numbers of (oo)cysts in contaminated food and water. As the environmental burden of Cryptosporidium oocysts and Giardia cysts from livestock waste increases with the projected increase in animal agriculture, public health is further compromised. Contamination of food by livestock feces containing Cryptosporidium oocysts and Giardia cysts could occur via routes that span the entire food production continuum. Intervention strategies aimed at preventing food contamination with Cryptosporidium and Giardia will require an integrated approach based on knowledge of the potential points of entry for these parasites into the food chain. This review examines the potential for foodborne illness from Cryptosporidium and Giardia from livestock sources and discusses possible mechanisms for prevention and control. Copyright © International Association for Food Protection.


Budu-Amoako E.,University of Prince Edward Island | Greenwood S.J.,University of Prince Edward Island | Dixon B.R.,Microbiology Research Division | Sweet L.,Queen Elizabeth Hospital | And 3 more authors.
Zoonoses and Public Health | Year: 2012

To determine the zoonotic potential of Cryptosporidium and Giardia in Prince Edward Island (PEI), Canada, 658 human faecal specimens were screened that were submitted to the Queen Elizabeth Hospital diagnostic laboratory. Overall, 143 (22%) samples were Cryptosporidium positive, while three (0.5%) were positive for Giardia. Successful genotyping of 25 Cryptosporidium isolates by sequence analysis of the HSP70 gene revealed that 28 and 72% were C. hominis and C. parvum, respectively. Cryptosporidium isolates from humans and previously genotyped C. parvum from beef cattle were subtyped by sequence analysis of the GP60 gene. Subtyping identified three subtypes belonging to the family IIa. All three subtypes IIaA16G2RI (55%), IIaA16G3RI (22%) and IIaA15G2RI (22%) were found in the animal isolates, while two of the subtypes found in the animals, IIaA16G2RI (80%) and IIaA15G2RI (20%), were also identified in the human isolates. Cryptosporidium infection in humans peaked in April-June. Molecular epidemiological analysis of the human data showed a C. parvum peak in the spring and a relatively smaller peak for C. hominis in July-September. The majority (57%) of human Cryptosporidium isolates were found in children between 5 and 10years of age. All three Giardia isolates were identified as G. duodenalis assemblage A. The overall Cryptosporidium prevalence in our human samples was high relative to other studies, but because the samples were submitted to a hospital diagnostic laboratory, the results may not be representative of the general population. Further, the presence of the same zoonotic C. parvum subtypes in cattle and human isolates implies that transmission is largely zoonotic and cattle may be a source of sporadic human infections on PEI. The presence of Giardia in people on PEI is rare, and the assemblage A found in humans might originate from humans, livestock or other domestic or wild animals. © 2012 Blackwell Verlag GmbH.


PubMed | Bureau of Food Surveillance and Science Integration and Microbiology Research Division
Type: Comparative Study | Journal: Applied and environmental microbiology | Year: 2016

Vibrio parahaemolyticus is a bacterial pathogen that can cause illness after the consumption or handling of contaminated seafood. The primary virulence factors associated with V. parahaemolyticus illness are thermostable direct hemolysin (TDH) and Tdh-related hemolysin (TRH). However, clinical strains lacking tdh and trh have recently been isolated, and these clinical isolates are poorly understood. To help understand the emergence of clinical tdh- and trh-negative isolates, a genomic approach was used to comprehensively compare 4 clinical tdh- and trh-negative isolates with 16 environmental tdh- and trh-negative isolates and 34 clinical isolates positive for tdh or trh, or both, with the objective of identifying genomic features that are unique to clinical tdh- and trh-negative isolates. The prevalence of pathogenicity islands (PAIs) common to clinical isolates was thoroughly examined in each of the clinical tdh- and trh-negative isolates. The tdh PAI was not present in any clinical or environmental tdh- and trh-negative isolates. The trh PAI was not present in any environmental isolates; however, in clinical tdh- and trh-negative isolate 10-4238, the majority of the trh PAI including a partial trh1 gene was present, which resulted in reclassification of this isolate as a tdh-negative and trh-positive isolate. In the other clinical tdh- and trh-negative isolates, neither the trh gene nor the trh PAI was present. We identified 862 genes in clinical tdh- and trh-negative isolates but not in environmental tdh- and trh-negative isolates. Many of these genes are highly homologous to genes found in common enteric bacteria and included genes encoding a number of chemotaxis proteins and a novel putative type VI secretion system (T6SS) effector and immunity protein (T6SS1). The availability of genome sequences from clinical V. parahaemolyticus tdh- and trh-negative isolates and the comparative analysis may help provide an understanding of how this pathotype is able to survive in vivo during clinical illness.


Waturangi D.E.,Atma Jaya Catholic University of Indonesia | Pradita N.,Atma Jaya Catholic University of Indonesia | Linarta J.,Atma Jaya Catholic University of Indonesia | Banerjee S.,Microbiology Research Division
Journal of Food Protection | Year: 2012

Vibrio cholerae is well recognized as the causative agent of cholera, an acute intestinal infection characterized by watery diarrhea that may lead to dehydration and death in some cases. V. cholerae is a natural inhabitant of the aquatic environment in the tropical regions. Jakarta has the highest percentage of individuals affected by sporadic diarrheal illness compared with other areas in Indonesia. Inadequate safety measures for drinking water supplies, improper sanitation, and poor hygiene can increase the risk of cholera outbreaks. Few studies have been conducted on the prevalence of these bacteria in ice and beverages that are popularly sold and consumed in Jakarta. In this study, we detected and quantified V. cholerae from ice and beverages collected from several areas in five regions of Jakarta. Levels of V. cholerae in both ice and beverages were determined with the three-tube mostprobable- number (MPN) method and ranged from <0.3 to >110 MPN/ml. The presence of regulatory and virulence gene sequences was determined by using uniplex and multiplex PCR assays. Of 110 samples tested, 33 (30%) were positive for V. cholerae; 21 (64%) were ice samples and the remaining 12 (36%) were beverages. A total of 88 V. cholerae strains were isolated, based on the presence of the toxR gene sequence identified by PCR. Other genetic markers, such as hlyA (59%), ompU (16%), and ctxA (19%), also were found during the search for potential pathogenic strains. The detection and isolation of potentially harmful V. cholerae from ice and beverages in Jakarta indicate that these products pose a health risk from choleragenic vibrios, particularly because of the emergence of classical biotypes of V. cholerae O1 and potentially harmful non-O1 serovars of this species. © International Association for Food Protection.


PubMed | Bureau of Food Surveillance and Science Integration and Microbiology Research Division
Type: Journal Article | Journal: Genome announcements | Year: 2016

The diversity of the genus Salmonella is reflected in the physiological adaptations used by its members in response to stressors such as high pressure. Here we report the draft whole genome sequences of 11 Salmonella enterica strains, five sensitive strains and six demonstrating high levels of pressure resistance.


PubMed | Bureau of Food Surveillance and Science Integration and Microbiology Research Division
Type: Journal Article | Journal: Genome announcements | Year: 2016

A 2014 foodborne salmonellosis outbreak in Canada and the United States implicated, for the first time, sprouted chia seed powder as the vehicle of transmission. Here, we report the draft whole genome sequences of two Salmonella enterica strains isolated from sprouted powders related to the aforementioned outbreak.

Loading Microbiology Research Division collaborators
Loading Microbiology Research Division collaborators