Microbial Screening Technologies Pty Ltd

Australia

Microbial Screening Technologies Pty Ltd

Australia
SEARCH FILTERS
Time filter
Source Type

Cho K.-J.,University of Houston | Park J.-H.,University of Houston | Piggott A.M.,University of Queensland | Salim A.A.,University of Queensland | And 5 more authors.
Journal of Biological Chemistry | Year: 2012

Oncogenic mutant Ras is frequently expressed in human cancers, but no anti-Ras drugs have been developed. Since membrane association is essential for Ras biological activity, we developed a high content assay for inhibitors of Ras plasma membrane localization. We discovered that staurosporine and analogs potently inhibit Ras plasma membrane binding by blocking endosomal recycling of phosphatidylserine, resulting in redistribution of phosphatidylserine from plasma membrane to endomembrane. Staurosporines are more active against K-Ras than H-Ras. K-Ras is displaced to endosomes and undergoes proteasomal- independent degradation, whereas H-Ras redistributes to the Golgi and is not degraded. K-Ras nanoclustering on the plasma membrane is also inhibited. Ras mislocalization does not correlate with protein kinase C inhibition or induction of apoptosis. Staurosporines selectively abrogate K-Ras signaling and proliferation of K-Ras-transformed cells. These results identify staurosporines as novel inhibitors of phosphatidylserine trafficking, yield new insights into the role of phosphatidylserine and electrostatics in Ras plasma membrane targeting, and validate a new target for anti-Ras therapeutics. © 2012 by The American Society for Biochemistry and Molecular Biology, Inc. Published in the U.S.A.


Emery S.J.,Macquarie University | Pascovi D.,Macquarie University | Lacey E.,Microbial Screening Technologies Pty Ltd | Haynes P.A.,Macquarie University
Molecular and Biochemical Parasitology | Year: 2015

The prevalence of Giardia duodenalis in humans is partly owed to its direct and simple life cycle, as well as the formation of the environmentally resistant and infective cysts. Proteomic and transcriptomic studies have previously analysed the encystation process using the well-characterised laboratory genomic strain, WB C6. This study presents the first quantitative study of encystation using pathogenically relevant and alternative assemblage A strains: the human-derived BRIS/82/HEPU/106 (H-106)and avian-derived BRIS/95/HEPU/2041 (B-2041). We utilised tandem MS/MS with a label-free quantitative approach to compare cysts and trophozoite life stages for strain variation, as well as confirm universal encystation markers of assemblage A. A total of 1061 non-redundant proteins were identified from both strains, including trophozoite- and cyst-specific proteomes and life-stage differentially expressed proteins. Additionally, 24 proteins previously classified in the literature as encystation-specific were confirmed as strain-independent markers of encystation. Functional cluster analysis of differentially expressed proteins saw significant overlap between strains, including protein trafficking and localisation in cysts, NEK kinase function, and carbohydrate metabolism in trophozoites. Two significant points of strain specific adaptations in cysts were also identified. B-2041 possessed major up-regulation of the ankyrin repeat protein 21.1 family compared to H-106. Furthermore, cysts of B-2041 retained near-complete VSP variant diversity between cysts and trophozoites, while H-106 lost 45% of its VSP variant diversity between life cycle stages, a constriction previously observed in studies of WB C6. This is the first report of strain variation in the cyst stage in G. duodenalis, and highlights cyst variation and its impacts on reinfection and life cycle success. © 2015 Elsevier B.V. All rights reserved.


Kohnke M.,University of Queensland | Schmitt S.,University of Queensland | Schmitt S.,ETH Zurich | Ariotti N.,University of Queensland | And 7 more authors.
Chemistry and Biology | Year: 2012

Protein prenylation is required for membrane anchorage of small GTPases. Correct membrane targeting is essential for their biological activity. Signal output of the prenylated proto-oncogene Ras in addition critically depends on its organization into nanoscale proteolipid assemblies of the plasma membrane, so called nanoclusters. While protein prenylation is an established drug target, only a handful of nanoclustering inhibitors are known, partially due to the lack of appropriate assays to screen for such compounds. Here, we describe three cell-based high-throughput screening amenable Förster resonance energy transfer NANOclustering and Prenylation Sensors (NANOPS) that are specific for Ras, Rho, and Rab proteins. Rab-NANOPS provides the first evidence for nanoclustering of Rab proteins. Using NANOPS in a cell-based chemical screen, we now identify macrotetrolides, known ionophoric antibiotics, as submicromolar disruptors of Ras nanoclustering and MAPK signaling. © 2012 Elsevier Ltd All rights reserved.


Emery S.J.,Macquarie University | Lacey E.,Microbial Screening Technologies Pty Ltd | Haynes P.A.,Macquarie University
Proteomics | Year: 2015

Giardia duodenalis is a gastrointestinal protozoan parasite of vertebrates and is a species complex comprised of eight assemblages, with the zoonotic assemblage A one of two subtypes infective for humans. With increasing genomic and transcriptomic data publicly available through the centralized giardiaDB.org, we have quantitatively analyzed the proteomes of eight G. duodenalis assemblage A strains (seven A1 and one A2) to provide a proteomic baseline to complement the available data. A nonredundant total of 1197 subassemblage A1 proteins and 719 subassemblage A2 proteins were identified with an average of 770 proteins in each strain. The eight strains were also searched against both assemblage A genome sequences (subassemblage A1 and A2 genomes) and demonstrated subassemblage specific differences in protein identifications, especially for variable gene families. Substantial differences were observed in the numbers and abundance in the variable surface protein family, and two different variable surface protein expression profiles that were independent of host origin, subassemblage, or geographic origin. We hypothesize that this variation in surface antigen switching events may be related to karotype and chromosomal variation, which would indicate an assemblage-independent mechanism of diversity generation in G. duodenalis. All MS data have been deposited in the ProteomeXchange with identifier PXD001272 (http://proteomecentral.proteomexchange.org/dataset/PXD001272). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.


Salim A.A.,University of Queensland | Xiao X.,University of Queensland | Cho K.-J.,University of Houston | Piggott A.M.,University of Queensland | And 4 more authors.
Organic and Biomolecular Chemistry | Year: 2014

Chemical investigations of a soil-derived Streptomyces sp. led to the isolation of five new polyketides, (+)-oxanthromicin, (±)-hemi- oxanthromicins A/B, (±)-spiro-oxanthromicin A and oxanthroquinone, and the known alkaloid staurosporine, and the detection of four new metastable analogues, (±)-spiro-oxanthromicins B1/B2/C1/C2. Among the compounds tested, SAR investigations established that the synthetic oxanthroquinone ethyl ester and 3-O-methyl-oxanthroquinone ethyl ester were optimal at mislocalising oncogenic mutant K-Ras from the plasma membrane of intact Madin-Darby canine kidney (MDCK) cells (IC50 4.6 and 1.2 μM), while a sub-EC 50 dose of (±)-spiro-oxanthromicin A was optimal at potentiating (750%) the K-Ras inhibitory activity of staurosporine (IC 50 60 pM). These studies demonstrate that a rare class of Streptomyces polyketide modulates K-Ras plasma membrane localisation, with implications for the future treatment of K-Ras dependent cancers. This journal is © the Partner Organisations 2014.


PubMed | Microbial Screening Technologies Pty. Ltd, University of Queensland and University of Houston
Type: Journal Article | Journal: Organic & biomolecular chemistry | Year: 2015

Frequently present in pancreatic, colorectal and non-small cell lung carcinomas, oncogenic mutant K-Ras must be localised to the plasma membrane (PM) to be functional. Inhibitors of K-Ras PM localisation are therefore putative cancer chemotherapeutics. By screening a microbial extract library in a high content cell-based assay we detected the rare oligomycin class of Streptomyces polyketides as inhibitors of K-Ras PM localisation. Cultivation and fractionation of three unique oligomycin producing Streptomyces strains yielded oligomycins A-E (1-5) and 21-hydroxy-oligomycin A (6), together with the new 21-hydroxy-oligomycin C (7) and 40-hydroxy-oligomycin B (8). Structures for 1-8 were assigned by detailed spectroscopic analysis. Cancer cell viability screening confirmed 1-8 were cytotoxic to human colorectal carcinoma cells (IC50 > 3 M), and were inhibitors of the ABC transporter efflux pump P-glycoprotein (P-gp), with 5 being comparable in potency to the positive control verapamil. Significantly, oligomycins 1-8 proved to be exceptionally potent inhibitors of K-Ras PM localisation (Emax 0.67-0.75 with an IC50 ~ 1.5-14 nM).


PubMed | Macquarie University and Microbial Screening Technologies Pty Ltd
Type: | Journal: Data in brief | Year: 2015

Eight Assemblage A strains from the protozoan parasite Giardia duodenalis were analysed using label-free quantitative shotgun proteomics, to evaluate inter- and intra-assemblage variation and complement available genetic and transcriptomic data. Isolates were grown in biological triplicate in axenic culture, and protein extracts were subjected to in-solution digest and online fractionation using Gas Phase Fractionation (GPF). Recent reclassification of genome databases for subassemblages was evaluated for database-dependent loss of information, and proteome composition of different isolates was analysed for biologically relevant assemblage-independent variation. The data from this study are related to the research article Quantitative proteomics analysis of Giardia duodenalis Assemblage A - a baseline for host, assemblage and isolate variation published in Proteomics (Emery et al., 2015 [1]).


PubMed | Macquarie University, Harvard University and Microbial Screening Technologies Pty
Type: | Journal: Scientific reports | Year: 2016

Giardia duodenalis is responsible for the majority of parasitic gastroenteritis in humans worldwide. Host-parasite interaction models in vitro provide insights into disease and virulence and help us to understand pathogenesis. Using HT-29 intestinal epithelial cells (IEC) as a model we have demonstrated that initial sensitisation by host secretions reduces proclivity for trophozoite attachment, while inducing virulence factors. Host soluble factors triggered up-regulation of membrane and secreted proteins, including Tenascins, Cathepsin-B precursor, cystatin, and numerous Variant-specific Surface Proteins (VSPs). By comparison, host-cell attached trophozoites up-regulated intracellular pathways for ubiquitination, reactive oxygen species (ROS) detoxification and production of pyridoxal phosphate (PLP). We reason that these results demonstrate early pathogenesis in Giardia involves two independent host-parasite interactions. Motile trophozoites respond to soluble secreted signals, which deter attachment and induce expression of virulence factors. Trophozoites attached to host cells, in contrast, respond by up-regulating intracellular pathways involved in clearance of ROS, thus anticipating the host defence response.


PubMed | Macquarie University and Microbial Screening Technologies Pty Ltd
Type: Comparative Study | Journal: Molecular and biochemical parasitology | Year: 2015

The prevalence of Giardia duodenalis in humans is partly owed to its direct and simple life cycle, as well as the formation of the environmentally resistant and infective cysts. Proteomic and transcriptomic studies have previously analysed the encystation process using the well-characterised laboratory genomic strain, WB C6. This study presents the first quantitative study of encystation using pathogenically relevant and alternative assemblage A strains: the human-derived BRIS/82/HEPU/106 (H-106)and avian-derived BRIS/95/HEPU/2041 (B-2041). We utilised tandem MS/MS with a label-free quantitative approach to compare cysts and trophozoite life stages for strain variation, as well as confirm universal encystation markers of assemblage A. A total of 1061 non-redundant proteins were identified from both strains, including trophozoite- and cyst-specific proteomes and life-stage differentially expressed proteins. Additionally, 24 proteins previously classified in the literature as encystation-specific were confirmed as strain-independent markers of encystation. Functional cluster analysis of differentially expressed proteins saw significant overlap between strains, including protein trafficking and localisation in cysts, NEK kinase function, and carbohydrate metabolism in trophozoites. Two significant points of strain specific adaptations in cysts were also identified. B-2041 possessed major up-regulation of the ankyrin repeat protein 21.1 family compared to H-106. Furthermore, cysts of B-2041 retained near-complete VSP variant diversity between cysts and trophozoites, while H-106 lost 45% of its VSP variant diversity between life cycle stages, a constriction previously observed in studies of WB C6. This is the first report of strain variation in the cyst stage in G. duodenalis, and highlights cyst variation and its impacts on reinfection and life cycle success.


PubMed | Macquarie University and Microbial Screening Technologies Pty Ltd
Type: Journal Article | Journal: Proteomics | Year: 2015

Giardia duodenalis is a gastrointestinal protozoan parasite of vertebrates and is a species complex comprised of eight assemblages, with the zoonotic assemblage A one of two subtypes infective for humans. With increasing genomic and transcriptomic data publicly available through the centralized giardiaDB.org, we have quantitatively analyzed the proteomes of eight G. duodenalis assemblage A strains (seven A1 and one A2) to provide a proteomic baseline to complement the available data. A nonredundant total of 1197 subassemblage A1 proteins and 719 subassemblage A2 proteins were identified with an average of 770 proteins in each strain. The eight strains were also searched against both assemblage A genome sequences (subassemblage A1 and A2 genomes) and demonstrated subassemblage specific differences in protein identifications, especially for variable gene families. Substantial differences were observed in the numbers and abundance in the variable surface protein family, and two different variable surface protein expression profiles that were independent of host origin, subassemblage, or geographic origin. We hypothesize that this variation in surface antigen switching events may be related to karotype and chromosomal variation, which would indicate an assemblage-independent mechanism of diversity generation in G. duodenalis. All MS data have been deposited in the ProteomeXchange with identifier PXD001272 (http://proteomecentral.proteomexchange.org/dataset/PXD001272).

Loading Microbial Screening Technologies Pty Ltd collaborators
Loading Microbial Screening Technologies Pty Ltd collaborators