Time filter

Source Type

Kohnke M.,University of Queensland | Schmitt S.,University of Queensland | Schmitt S.,ETH Zurich | Ariotti N.,University of Queensland | And 7 more authors.
Chemistry and Biology | Year: 2012

Protein prenylation is required for membrane anchorage of small GTPases. Correct membrane targeting is essential for their biological activity. Signal output of the prenylated proto-oncogene Ras in addition critically depends on its organization into nanoscale proteolipid assemblies of the plasma membrane, so called nanoclusters. While protein prenylation is an established drug target, only a handful of nanoclustering inhibitors are known, partially due to the lack of appropriate assays to screen for such compounds. Here, we describe three cell-based high-throughput screening amenable Förster resonance energy transfer NANOclustering and Prenylation Sensors (NANOPS) that are specific for Ras, Rho, and Rab proteins. Rab-NANOPS provides the first evidence for nanoclustering of Rab proteins. Using NANOPS in a cell-based chemical screen, we now identify macrotetrolides, known ionophoric antibiotics, as submicromolar disruptors of Ras nanoclustering and MAPK signaling. © 2012 Elsevier Ltd All rights reserved. Source

Salim A.A.,University of Queensland | Cho K.-J.,University of Houston | Tan L.,University of Houston | Quezada M.,University of Queensland | And 3 more authors.
Organic Letters | Year: 2014

During a search for inhibitors of oncogenic K-Ras, we detected two known and two new examples of the rare neoantimycin structure class from a liquid cultivation of Streptomyces orinoci, and reassigned/assigned structures to all based on detailed spectroscopic analysis and microscale C3 Marfey's and C3 Mosher chemical degradation/derivatization/analysis. SAR investigations inclusive of the biosynthetically related antimycins and respirantin, and synthetic benzoxazolone, documented a unique N-formyl amino-salicylamide pharmacophore as a potent inhibitor of oncogenic K-Ras. © 2014 American Chemical Society. Source

Cho K.-J.,University of Houston | Park J.-H.,University of Houston | Piggott A.M.,University of Queensland | Salim A.A.,University of Queensland | And 5 more authors.
Journal of Biological Chemistry | Year: 2012

Oncogenic mutant Ras is frequently expressed in human cancers, but no anti-Ras drugs have been developed. Since membrane association is essential for Ras biological activity, we developed a high content assay for inhibitors of Ras plasma membrane localization. We discovered that staurosporine and analogs potently inhibit Ras plasma membrane binding by blocking endosomal recycling of phosphatidylserine, resulting in redistribution of phosphatidylserine from plasma membrane to endomembrane. Staurosporines are more active against K-Ras than H-Ras. K-Ras is displaced to endosomes and undergoes proteasomal- independent degradation, whereas H-Ras redistributes to the Golgi and is not degraded. K-Ras nanoclustering on the plasma membrane is also inhibited. Ras mislocalization does not correlate with protein kinase C inhibition or induction of apoptosis. Staurosporines selectively abrogate K-Ras signaling and proliferation of K-Ras-transformed cells. These results identify staurosporines as novel inhibitors of phosphatidylserine trafficking, yield new insights into the role of phosphatidylserine and electrostatics in Ras plasma membrane targeting, and validate a new target for anti-Ras therapeutics. © 2012 by The American Society for Biochemistry and Molecular Biology, Inc. Published in the U.S.A. Source

Salim A.A.,University of Queensland | Tan L.,University of Houston | Huang X.-C.,University of Queensland | Cho K.-J.,University of Houston | And 3 more authors.
Organic and Biomolecular Chemistry | Year: 2015

Frequently present in pancreatic, colorectal and non-small cell lung carcinomas, oncogenic mutant K-Ras must be localised to the plasma membrane (PM) to be functional. Inhibitors of K-Ras PM localisation are therefore putative cancer chemotherapeutics. By screening a microbial extract library in a high content cell-based assay we detected the rare oligomycin class of Streptomyces polyketides as inhibitors of K-Ras PM localisation. Cultivation and fractionation of three unique oligomycin producing Streptomyces strains yielded oligomycins A-E (1-5) and 21-hydroxy-oligomycin A (6), together with the new 21-hydroxy-oligomycin C (7) and 40-hydroxy-oligomycin B (8). Structures for 1-8 were assigned by detailed spectroscopic analysis. Cancer cell viability screening confirmed 1-8 were cytotoxic to human colorectal carcinoma cells (IC50 > 3 μM), and were inhibitors of the ABC transporter efflux pump P-glycoprotein (P-gp), with 5 being comparable in potency to the positive control verapamil. Significantly, oligomycins 1-8 proved to be exceptionally potent inhibitors of K-Ras PM localisation (Emax 0.67-0.75 with an IC50 ∼ 1.5-14 nM). © 2016 The Royal Society of Chemistry. Source

Lacey H.J.,Microbial Screening Technologies Pty Ltd | Vuong D.,Microbial Screening Technologies Pty Ltd | Pitt J.I.,CSIRO | Lacey E.,Microbial Screening Technologies Pty Ltd | Piggott A.M.,Macquarie University
Australian Journal of Chemistry | Year: 2016

A soil survey conducted in southern Queensland, Australia, identified a novel isolate belonging to the genus Aspergillus subgenus Circumdati section Circumdati, Aspergillus kumbius FRR6049. Cultivation and fractionation of secondary metabolites from A. kumbius revealed a unique chemotype comprising three new bis-indolyl benzenoids, kumbicins A-C, and a new bis-indolyl benzoquinone, kumbicin D, along with the previously reported compounds asterriquinol D dimethyl ether, petromurins C and D, aspochracin, its N-demethyl analogue JBIR-15, and neohydroxyaspergillic acid. The structures of kumbicins A-D were assigned by detailed spectroscopic analysis. Kumbicin C was found to inhibit the growth of mouse myeloma cells (IC50 0.74 μgmL-1) and the Gram-positive bacterium Bacillus subtilis (MIC 1.6 μgmL-1). © CSIRO 2016. Source

Discover hidden collaborations