Microbial Inflammation Research

Borstel-Hohenraden, Germany

Microbial Inflammation Research

Borstel-Hohenraden, Germany
SEARCH FILTERS
Time filter
Source Type

Song H.,University of Alabama at Birmingham | Huff J.,University of Alabama at Birmingham | Janik K.,Kansas State University | Walter K.,Microbial Inflammation Research | And 6 more authors.
Molecular Microbiology | Year: 2011

Homeostasis of intracellular pH is a trait critical for survival of Mycobacterium tuberculosis in macrophages. However, mechanisms by which M. tuberculosis adapts to acidic environments are poorly understood. In this study, we analysed the physiological functions of OmpATb, a surface-accessible protein of M. tuberculosis. OmpATb did not complement the permeability defects of a Mycobacterium smegmatis porin mutant to glucose, serine and glycerol, in contrast to the porin MspA. Uptake rates of these solutes were unchanged in an ompATb operon mutant of M. tuberculosis indicating that OmpATb is not a general porin. Chemical analysis of low-pH culture filtrates showed that the proteins encoded by the ompATb operon are involved in generating a rapid ammonia burst, which neutralized medium pH and preceded exponential growth of M. tuberculosis. Addition of ammonia accelerated growth of the ompATb operon mutant demonstrating that ammonia secretion is indeed a mechanism by which M. tuberculosis neutralizes acidic environments. Infection experiments revealed that the ompATb operon was not required for full virulence in mice suggesting that M. tuberculosis has multiple mechanisms of resisting phagosomal acidification. Taken together, these results show that the ompATb operon is necessary for rapid ammonia secretion and adaptation of M. tuberculosis to acidic environments in vitro but not in mice. © 2011 Blackwell Publishing Ltd.


Sodenkamp J.,Research Center Borstel | Behrends J.,Research Center Borstel | Forster I.,Heinrich Heine University Düsseldorf | Muller W.,University of Manchester | And 3 more authors.
European Journal of Cell Biology | Year: 2011

gp130 is a common receptor chain for cytokines such as interleukin (IL)-27 and IL-6. During experimental tuberculosis (TB), IL-27 prevents optimal antimycobacterial protection and limits the pathological sequelae of chronic inflammation. The anti-inflammatory properties of IL-27 have been attributed mainly to its suppressive effect on T helper (TH) cells. However, because gp130 cytokines also suppress the inflammatory immune response of macrophages, IL-27 may also regulate inflammation by limiting the secretion of pro-inflammatory cytokines. To specifically address the role of gp130 cytokines on macrophages, the outcome of experimental TB was analysed in macrophage/neutrophil-specific gp130-deficient (LysMcre gp130loxP/loxP) mice. In these mice, the enhanced induction of inflammatory cytokines and increased expression of the inducible nitric oxide synthase (NOS2) and LRG47 was linked to a greatly augmented TH17 immune response and matrix metalloproteinase (MMP)-9 expression. However, this amplified inflammatory immune response in Mtb-infected LysMcre gp130loxP/loxP mice was not associated with reduced bacterial loads and/or accelerated pathology. Our study revealed an immunoregulatory function of gp130 cytokines on macrophages/granulocytes, which is, however, not critical for modulating the outcome of TB. © 2010 Elsevier GmbH.


Sodenkamp J.,Research Center Borstel | Waetzig G.H.,CONARIS Research Institute AG | Scheller J.,Heinrich Heine University Düsseldorf | Seegert D.,CONARIS Research Institute AG | And 5 more authors.
Immunobiology | Year: 2012

Treatment of autoreactive inflammatory diseases such as rheumatoid arthritis with anti-inflammatory drugs is associated with an increased rate of reactivation tuberculosis (TB). Interleukin-6 (IL-6) plays a pivotal role in inflammation and protection against various infectious diseases. IL-6 signals by two mechanisms via the ubiquitous transmembrane protein gp130: 'classic' signaling using the membrane-bound IL-6 receptor (IL-6R), which is expressed mainly on hepatocytes and some leukocytes, and trans-signaling using soluble IL-6R (sIL-6R). Trans-signaling by the IL-6/sIL-6R complex is selectively inhibited by natural soluble gp130 (sgp130) and by sgp130 designer proteins. As specific blockade of IL-6 trans-signaling represents a promising approach for the therapy of inflammatory diseases, we evaluated the potential risk of interfering with this alternative pathway and analyzed the outcome of experimental TB after treatment with an IgG1-Fc fusion protein of soluble gp130 (sgp130Fc) and in sgp130Fc-overexpressing transgenic (sgp130Fctg) mice. In contrast to treatment with anti-tumor necrosis factor (TNF) antibodies, administration of sgp130Fc did not interfere with protective immune responses after infection with Mycobacterium tuberculosis (Mtb). Moreover, Mtb-infected sgp130Fctg mice were capable of controlling mycobacterial growth. Our finding that IL-6 trans-signaling plays no role for protective immune responses against Mtb supports the superior safety of therapeutic targeting of IL-6 trans-signaling compared to anti-TNF treatment. © 2012 Elsevier GmbH.


Behrends J.,Research Center Borstel | Renauld J.-C.,Ludwig Institute for Cancer Research | Ehlers S.,Microbial Inflammation Research | Ehlers S.,University of Kiel | Holscher C.,Research Center Borstel
PLoS ONE | Year: 2013

Anti-inflammatory treatment of autoimmune diseases is associated with an increased risk of reactivation tuberculosis (TB). Besides interleukin (IL-17)A, IL-22 represents a classical T helper (TH)17 cytokine and shares similar pathological effects in inflammatory diseases such as psoriasis or arthritis. Whereas IL-17A supports protective immune responses during mycobacterial infections, the role of IL-22 after infection with Mycobacterium tuberculosis (Mtb) is yet poorly characterized. Therefore, we here characterize the cell types producing IL-22 and the protective function of this cytokine during experimental TB in mice. Like IL-17A, IL-22 is expressed early after infection with Mtb in an IL-23-dependent manner. Surprisingly, the majority of IL-22-producing cells are not positive for IL-17A but have rather functional characteristics of interferon-gamma-producing TH1 cells. Although we found minor differences in the number of naive and central memory T cells as well as in the frequency of TH1 and polyfunctional T cells in mice deficient for IL-22, the absence of IL-22 does not affect the outcome of Mtb infection. Our study revealed that although produced by TH1 cells, IL-22 is dispensable for protective immune responses during TB. Therefore, targeting of IL-22 in inflammatory disease may represent a therapeutic approach that does not incur the danger of reactivation TB. © 2013 Behrends et al.


Hessmann M.,Research Center Borstel | Rausch A.,Research Center Borstel | Ruckerl D.,Research Center Borstel | Adams P.S.,The Trudeau Institute | And 7 more authors.
Immunobiology | Year: 2011

The activating C-type lectin-like receptor NKG2D, which is expressed by mouse NK cells and activated CD8 T cells, was previously demonstrated to be involved in tumor rejection and as a defense mechanism against viral and bacterial infections. Because CD8 T cells are important for protective immune responses during chronic Mycobacterium tuberculosis (Mtb) infection and represent a promising target for new vaccine strategies to prevent human pulmonary tuberculosis (TB), we studied the immune response in mice deficient for the NKG2D adapter molecule DAP10 during experimental TB. After aerosol infection, DAP10-defcient mice displayed an unimpaired recruitment, activation and development of antigen-specific CD8 T cells. Whereas the frequency of interferon-gamma-producing CD8 T cells from Mtb-infected DAP10-defcient mice was not affected, CD8 T cell-mediated cytotoxicity was significantly reduced in the absence of DAP10. The loss of cytotoxic activity in DAP10-deficient CD8 T cells was associated with an impaired release of cytotoxic granules. Together, our results suggest that during Mtb infection DAP10 is required for maximal cytolytic activity of CD8 T cells. © 2010 Elsevier GmbH.


Thye T.,Bernhard Nocht Institute for Tropical Medicine | Thye T.,University of Lübeck | Niemann S.,National Reference Center for Mycobacteria | Walter K.,Microbial Inflammation Research | And 14 more authors.
PLoS ONE | Year: 2011

Structural variants of the Mannose Binding Lectin (MBL) cause quantitative and qualitative functional deficiencies, which are associated with various patterns of susceptibility to infectious diseases and other disorders. We determined genetic MBL variants in 2010 Ghanaian patients with pulmonary tuberculosis (TB) and 2346 controls and characterized the mycobacterial isolates of the patients. Assuming a recessive mode of inheritance, we found a protective association between TB and the MBL2 G57E variant (odds ratio 0.60, confidence interval 0.4-0.9, P 0.008) and the corresponding LYQC haplotype (Pcorrected 0.007) which applied, however, only to TB caused by M. africanum but not to TB caused by M. tuberculosis. In vitro, M. africanum isolates bound recombinant human MBL more efficiently than did isolates of M. tuberculosis. We conclude that MBL binding may facilitate the uptake of M. africanum by macrophages, thereby promoting infection and that selection by TB may have favoured the spread of functional MBL deficiencies in regions endemic for M. africanum. © 2011 Thye et al.


Neumann J.,Research Center Borstel | Schaale K.,Research Center Borstel | Farhat K.,Research Center Borstel | Farhat K.,University of Gottingen | And 6 more authors.
FASEB Journal | Year: 2010

Wnt/Frizzled signaling, essential for embryonic development, has also recently been implicated in the modulation of inflammatory processes. In the current study, we observed a reciprocal regulation of the Toll-like receptor (TLR)/nuclear factor-κB (NF-κB) and the Wnt/β-catenin pathway after aerosol infection of mice with Mycobacterium tuberculosis: whereas proinflammatory mediators were substantially increased, β-catenin signaling was significantly reduced. A systematic screen of Fzd homologs in infected mice identified Fzd1 mRNA to be significantly up-regulated during the course of infection. In vitro infection of murine macrophages led to a strong induction of Fzd1 that was dependent on TLRs, the myeloid differentiation response gene 88 (MyD88), and a functional NF-κB pathway. Flow cytometry demonstrated an elevated Fzd1 expression on macrophages in response to M. tuberculosis that was synergistically enhanced in the presence of IFN-γ. Addition of the Fzd1 ligand Wnt3a induced Wnt/βcatenin signaling in murine macrophages that was inhibited in the presence of a soluble Fzd1/Fc fusion protein. Furthermore, Wnt3a reduced TNF release, suggesting that Wnt3a promotes antiinflammatory functions in murine macrophages. The current data support the notion that evolutionarily conserved Wnt/Fzd signaling is involved in balancing the inflammatory response to microbial stimulation of innate immune cells of vertebrate origin. © FASEB.


Heitmann L.,Research Center Borstel | Schoenen H.,Friedrich - Alexander - University, Erlangen - Nuremberg | Ehlers S.,Microbial Inflammation Research | Ehlers S.,University of Kiel | And 2 more authors.
Immunobiology | Year: 2013

Individually and combined, Toll-like receptors (TLR)-2, -4, -9, nucleotide oligomerization domain (NOD) 2 and NALP3 contribute to the Mycobacterium tuberculosis (Mtb)-induced innate immune response only to a limited extent, particularly in terms of inducing antibacterial protection and granuloma formation in vivo. A singular essential sensory component of this initial response has not been discovered yet. Trehalose-6,6'-dimycolate (TDM), a well known mycobacterial cell wall glycolipid, is believed to be involved in these early inflammatory processes after Mtb infection. Only recently the macrophage inducible C-type lectin (Mincle) was demonstrated as an essential receptor for TDM. However, not much is known about the sensing capacity of Mincle during infection with live mycobacteria. To determine the significance of Mincle during tuberculosis (TB), we analyzed the outcome of Mtb infection in Mincle-deficient mice. Whereas in the absence of Mincle macrophages did not respond to TDM, Mincle-deficient mice were capable of mounting an efficient granulomatous and protective immune response after low and high dose infections with Mtb. Mutant mice generated a normal T helper (TH) 1 and TH17 immune response followed by the induction of efficient macrophage effector mechanisms and control of mycobacterial growth identical to wildtype mice. From our results we conclude that absence of the innate receptor Mincle can be fully compensated for in vivo in terms of sensing Mtb and mounting a protective inflammatory immune response. © 2012 Elsevier GmbH.


Plinke C.,Molecular Mycobacteriology Group | Walter K.,Microbial Inflammation Research | Aly S.,Microbial Inflammation Research | Ehlers S.,Microbial Inflammation Research | And 2 more authors.
Antimicrobial Agents and Chemotherapy | Year: 2011

Ethambutol (EMB) is a major component of the first-line therapy of tuberculosis. Mutations in codon 306 of embB (embB306) were suggested as a major resistance mechanism in clinical isolates. To directly analyze the impact of individual embB306 mutations on EMB resistance, we used allelic exchange experiments to generate embB306 mutants of M. tuberculosis H37Rv. The level of EMB resistance conferred by particular mutations was measured in vitro and in vivo after EMB therapy by daily gavage in a mouse model of aerogenic tuberculosis. The wild-type embB306 ATG codon was replaced by embB306 ATC, ATA, or GTG, respectively. All of the obtained embB306 mutants exhibited a 2- to 4-fold increase in EMB MIC compared to the wild-type H37Rv. In vivo, the one selected embB306 GTG mutant required a higher dose of ethambutol to restrict its growth in the lung compared to wild-type H37Rv. These experiments demonstrate that embB306 point mutations enhance the EMB MIC in vitro to a moderate, but significant extent, and reduce the efficacy of EMB treatment in the animal model. We propose that conventional EMB susceptibility testing, in combination with embB306 genotyping, may guide dose adjustment to avoid clinical treatment failure in these low-level resistant strains. Copyright © 2011, American Society for Microbiology. All Rights Reserved.


PubMed | Microbial Inflammation Research
Type: Journal Article | Journal: Cell host & microbe | Year: 2010

Focal accumulations of mononuclear cells, called granulomas, are a hallmark of mycobacterial infections. A common misconception is that granulomas are uniformly protective. In transparent zebrafish larvae infected with Mycobacterium marinum, Volkman et al. demonstrate an interaction of mycobacteria with epithelial cells that helps recruit macrophages to the granuloma as feeder cells.

Loading Microbial Inflammation Research collaborators
Loading Microbial Inflammation Research collaborators