Entity

Time filter

Source Type


Choi S.K.,Michigan Nanotechnology Institute for Medicine and Biological science | Thomas T.P.,Michigan Nanotechnology Institute for Medicine and Biological science | Leroueil P.,Michigan Nanotechnology Institute for Medicine and Biological science | Kotlyar A.,Michigan Nanotechnology Institute for Medicine and Biological science | And 4 more authors.
Journal of Physical Chemistry B | Year: 2012

Oximes are important in the treatment of organophosphate (OP) poisoning, but have limited biological half-lives. Complexing these drugs with a macromolecule, such as a dendrimer, could improve their pharmacokinetics. The present study investigates the intermolecular interactions that drive the complexation of oxime-based drug molecules with fifth generation poly(amidoamine) (PAMAM) dendrimers. We performed steady-state binding studies of two molecules, pralidoxime and obidoxime, employing multiple NMR methods, including 1D titration, 1H-1H 2D spectroscopy (COSY, NOESY), and 1H diffusion-ordered spectroscopy (DOSY). Several important insights were gained in understanding the host-guest interactions occurring between the drug molecules and the polymer. First, the guest molecules bind to the dendrimer macromolecule through a specific interaction rather than through random, hydrophobic encapsulation. Second, this specificity is driven primarily by the electrostatic or H-bond interaction of the oxime at a dendrimer amine site. Also, the average strength for each drug and dendrimer interaction is affected by the surface modification of the polymer. Third, individual binding events between oximes and a dendrimer have a negative cooperative effect on subsequent oxime binding. In summary, this report provides a novel perspective important for designing host systems for drug delivery. © 2012 American Chemical Society.


Kratz J.D.,Michigan Nanotechnology Institute for Medicine and Biological science | Kratz J.D.,University of Wisconsin - Madison | Chaddha A.,University of Wisconsin - Madison | Bhattacharjee S.,Michigan Nanotechnology Institute for Medicine and Biological science | And 3 more authors.
Cardiovascular Drugs and Therapy | Year: 2016

Over the past several decades, tremendous advances have been made in the understanding, diagnosis, and treatment of coronary artery disease (CAD). However, with shifting demographics and evolving risk factors we now face new challenges that must be met in order to further advance are management of patients with CAD. In parallel with advances in our mechanistic appreciation of CAD and atherosclerosis, nanotechnology approaches have greatly expanded, offering the potential for significant improvements in our diagnostic and therapeutic management of CAD. To realize this potential we must go beyond to recognize new frontiers including knowledge gaps between understanding atherosclerosis to the translation of targeted molecular tools. This review highlights nanotechnology applications for imaging and therapeutic advancements in CAD. © 2016, Springer Science+Business Media New York.


Goonewardena S.N.,Michigan Nanotechnology Institute for Medicine and Biological science | Goonewardena S.N.,University of Michigan | Kratz J.D.,Michigan Nanotechnology Institute for Medicine and Biological science | Zong H.,Michigan Nanotechnology Institute for Medicine and Biological science | And 6 more authors.
Bioorganic and Medicinal Chemistry Letters | Year: 2013

We have previously shown that methotrexate (MTX) conjugated to a cancer-specific poly amido amine (PAMAM) dendrimer has a higher therapeutic index than MTX alone. Unfortunately, these therapeutics have been difficult to advance because of the complicated syntheses and an incomplete understanding of the dendrimer properties. We wished to address these obstacles by using copper-free click chemistry to functionalize the dendrimer scaffolds and to exploring the effects of two dendrimer properties (the targeting ligand and drug linkage) on cytotoxicity. We conjugated either ester or amide-linker modified MTX to dendrimer scaffolds with or without folic acid (FA). Because of multivalency, the FA and MTX functionalized dendrimers had similar capacities to target the folate receptor on cancer cells. Additionally, we found that the ester- and amide-linker modified MTX compounds had similar cytotoxicity but the dendrimer-ester MTX conjugates were much more cytotoxic than the dendrimer-amide MTX conjugates. These results clarify the impact of these properties on therapeutic efficacy and will allow us to design more effective polymer therapeutics. © 2013 Elsevier Ltd. All rights reserved.


Wang S.H.,Michigan Nanotechnology Institute for Medicine and Biological science | Wang S.H.,University of Michigan | Fan Y.,Michigan Nanotechnology Institute for Medicine and Biological science | Baker Jr. J.R.,Michigan Nanotechnology Institute for Medicine and Biological science | Baker Jr. J.R.,University of Michigan
Journal of Translational Medicine | Year: 2014

Background: BID functions as a bridge molecule between death-receptor and mitochondrial related apoptotic pathways to amplify apoptotic signaling. Our previous studies have demonstrated a substantial increase in BID expression in primary normal thyroid epithelia cells treated with inflammatory cytokines, including the combination of IFNγ and IL-1β or IFNγ and TNFα. The aim of this study was to determine whether an increase in BID expression in thyroid can induce autoimmune thyroiditis.Methods: A transgenic mouse line that expresses human BID in thyroid cells was established by fusing a mouse thyroglobulin (Tg) promoter upstream of human BID (Tg-BID). We tested whether the increased expression of pro-apoptotic BID in thyroid would induce autoimmune thyroiditis, both in the presence and absence of 0.3% iodine water.Results: Our data show that Tg-BID mice in a CBA/J (H-2 k) background do not spontaneously develop autoimmune thyroiditis for over a year. However, upon ingestion of iodine in the drinking water, autoimmune thyroiditis does develop in Tg-BID transgenic mice, as shown by a significant increase in anti-Tg antibody and mononuclear cell infiltration in the thyroid glands in 30% of mice tested. Serum T4 levels, however, were similar between iodine-treated Tg-BID transgenic mice and the wild type mice.Conclusions: Our data demonstrate that increased thyroid expression of BID facilitates the development of autoimmune thyroiditis induced by iodine uptake. However, the overexpression of BID itself is not sufficient to initiate thyroiditis in CBA/J (H-2 k) mice. © 2014 Wang et al.; licensee BioMed Central Ltd.


Zong H.,Michigan Nanotechnology Institute for Medicine and Biological science | Goonewardena S.N.,Michigan Nanotechnology Institute for Medicine and Biological science | Goonewardena S.N.,University of Michigan | Chang H.-N.,Michigan Nanotechnology Institute for Medicine and Biological science | And 2 more authors.
Bioorganic and Medicinal Chemistry | Year: 2014

Bioorthogonal 'click' reactions have recently emerged as promising tools for chemistry and biological applications. By using a combination of two different 'click' reactions, 'double-click' strategies have been developed to attach multiple labels onto biomacromolecules. These strategies require multi-step modifications of the biomacromolecules that can lead to heterogeneity in the final conjugates. Herein, we report the synthesis and characterization of a set of three trifunctional linkers. The linkers having alkyne and cyclooctyne moieties that are capable of participating in sequential copper(I)-catalyzed and copper-free cycloaddition reactions with azides. We have also prepared a linker comprised of an alkyne and a 1,2,4,5-terazine moiety that allows for simultaneous cycloaddition reactions with azides and trans-cyclooctenes, respectively. These linkers can be attached to synthetic or biological macromolecules to create a platform capable of sequential or parallel 'double-click' labeling in biological systems. We show this potential using a generation 5 (G5) polyamidoamine (PAMAM) dendrimer in combination with the clickable linkers. The dendrimers were successfully modified with these linkers and we demonstrate both sequential and parallel 'double-click' labeling with fluorescent reporters. We anticipate that these linkers will have a variety of application including molecular imaging and monitoring of macromolecule interactions in biological systems. © 2014 Elsevier Ltd. All rights reserved.

Discover hidden collaborations