Time filter

Source Type

Ann Arbor, MI, United States

Agency: Department of Health and Human Services | Branch: | Program: SBIR | Phase: Phase I | Award Amount: 220.03K | Year: 2012

DESCRIPTION (provided by applicant): Diabetic Retinopathy (DR), a vision threatening complication of diabetes, can be managed more effectively if detected early. We propose to enable such early diagnosis by developing a portable retinal imaging instrument- LSC EYE - that will, for the first time, extract both the anatomy and physiology of retinal microvasculature t high resolution without the need for dye administration. The LSC EYE is expected to cost less than 2000 and will enable primary care physicians to administer simple, quick and inexpensive retinal exams leading to timely diagnosis of DR. We have developed intellectual property central to the realization of such a device through two innovations: firstly, the extraction of retinal microvessel physiology using laser speckle contract imaging (LSCI) and secondly, the portable implementation of LSCI using a novel imaging sensor in conjunction with a miniaturized optical system. The imaging sensor has been custom designed and fabricated using complementary metal oxide semiconductor (CMOS) technology and performs on par with conventionally used imaging charge coupled device (CCD)cameras with respect to both sensitivity and noise. During Phase I, we will demonstrate the feasibility of achieving a portable retinal imager by incorporating a suite of novel image-enhancing algorithms into the LSCI technique and subsequently validate the safety and efficacy of the LSC EYE in a preclinical rabbit eye model. We will generate the first high resolution LSCI images ofthe retina capable of resolving blood vessels with diameters less than 60 m. Upon successful completion of Phase I milestones, we will embark on our Phase II efort during which we wil develop a clinical grade portable LSC EYE prototype, apply for investigational device exemption (IDE) and continue to undertake preliminary clinical investigation of the LSC EYE in small number of healthy volunteers and patients with advanced diabetes. ABSTRACT PUBLIC HEALTH RELEVANCE: There is a potential for earlydiagnosis of diabetic retinopathy through routine enhanced imaging of the retina. The goal of our project is to investigate the feasibility and develop laser contrast speckle imaging for high resolution imaging of retinal anatomy and physiology. We will develop a hand held prototype of a retinal imaging instrument with specifications, as might diagnose diabetic retinopathy early.

Agency: Department of Health and Human Services | Branch: | Program: SBIR | Phase: Phase I | Award Amount: 195.58K | Year: 2012

DESCRIPTION (provided by applicant): This project will focus on the preparation and evaluation of nonthrombogenic, antibacterial nitric oxide (NO) releasing catheters. Phase 1 of this SBIR will: 1) develop unique NO secreting catheters (14-20 gauge); 2) test them in rabbit and sheep models to evaluate thrombogenicity and bacterial adherence; Phase 2 will scale up manufacturing and evaluate toxicity in preparation for human trials. The rationale for this research is to mimic the function of the endothelium.Low levels of NO released by the normal endothelium inhibit platelet adhesion and activation, thus preventing thrombus formation. Further, it has been shown that NO at low doses exhibits significant bactericidal activity. Hence, the preparation of catheters that secrete NO will solve two longstanding problems in the care of critically ill patients. The basic NO release polymer technology that employs novel diazeniumdiolate type NO donors has been developed in laboratories at the University of Michigan (U ofM) over the past 10 years. Successful applications of this technology have already included the development of anti-platelet coatings for extracorporeal circulation devices and the preparation more biocompatible implantable chemical sensors with improvedanalytical performance. Via collaboration with the research team at the U of M that has been working on this technology, MC3 now intends to develop and test catheters that release NO at controlled rates in order to prevent thrombosis and infection, two major problems associated with the use of catheters. PUBLIC HEALTH RELEVANCE: Clotting and infection is a major problem in intravascular (IV) catheters. Normal blood vessels secrete a chemical called nitric oxide which prevents these problems. This research will develop 14-20 gauge catheters which secrete nitric oxide, decreasing the risk of clotting and infection.

Agency: Department of Health and Human Services | Branch: | Program: STTR | Phase: Phase I | Award Amount: 228.59K | Year: 2013

DESCRIPTION (provided by applicant): For twenty years prolonged extracorporeal life support (ECLS ECMO) has been standard treatment for infants with severe heart or lung failure unresponsive to other treatment. The healthy survival rate in over 30,000 cases ranges from 40% in cardiac arrest to 95% in meconium aspiration. Improved treatment has resulted in decreased need for ECMO in full term neonatal respiratory failure, but the application to respiratory failure in older infants, cardiac failure, and sepsis is increasing. The devices used fr ECMO are individual components from several manufacturers, assembled on site, and used off label. Recently three companies have combined the devices into an integrated ECMO system. These are designed for older children and adults but require substantial modification for infants. The goal of this project is to design, test, and produce a life support system specifically for infants (1 through 10 kg, 1 day to 2 years age); we call this MiniECMO. Phase l aims include integration of the MC3 BioLung and MPump devices with cartridge heat modules and an automated sweep gas controller. The system will be coated with our unique nonthrombogenic NO secreting polymer to decrease or eliminate the need for systemic anticoagulation.The prototype system will be fabricated and tested in vitro to demonstrate safety, efficacy and durability. A pilot in vivo study will be conducted to measure durability of gs exchange, properties of the MiniLung, and to evaluate thrombogenicity. Phase llwill include extended testing of MiniECMO for safety and efficacy, development of a clinical ready device, and a clinical trial for ten patients conducted under an investigational device exemption (IDE). The University of Michigan Extracorporeal Life Support Lab and Michigan Critical Care Consultants are the leaders in this field and can bring this technology to reality in four years. PUBLIC HEALTH RELEVANCE PUBLIC HEALTH RELEVANCE: The value of prolonged extracorporeal life support for infantsis well established. The success of this technology has been accomplished using a variety of devices that are designed for older children and adults, but are not well suited for infants. The goal of this research project is to design and produce a life support system specifically for infants, called MiniECMO, which will make the entire technology safer, simpler, and less expensive for current and future applications.

Agency: Department of Health and Human Services | Branch: | Program: SBIR | Phase: Phase II | Award Amount: 971.23K | Year: 2011

DESCRIPTION (provided by applicant): Short bowel syndrome (SBS) represents a large loss of intestinal length, compromising the absorption of nutrients and fluids to sustain life. Although patients may be maintained on parenteral (intravenous) nutrition, the morbidity can be devastating and associated mortality rates exceed 30%. Care for each SBS patient is in excess of 250,000 per year and estimated costs for just the first five years of the care of a child with SBS exceed 1.5 million. Although a number ofstrategies have been used to treat SBS, the results have been disappointing with high complication rates and death. Application of longitudinal distractive forces, as directed with an intraluminally placed device, induces intestinal growth in pig small intestine (1.7-fold) over a 7-day period. The lengthening (enterogenesis) is not merely a stretching of the intestine, but true growth with preservation of intestinal function. The goal of this proposal is to develop a catheter-based device which could be placed intralumenally for days to weeks in a clinical setting to deliver longitudinal forces to the intestine, allowing for an elongation of the bowel while keeping the continuity of the gastrointestinal tract intact. The catheter enterogenesis device (CED)is envisioned as a simple, effective means of improving survival for SBS sufferers. Phase 1 resulted in the successful development of a working prototype. Two inflated balloons effectively anchored to the intestinal wall and delivered the forces previously determined to be effective for enterogenesis. The aims of this proposal is to develop the insertion and removal technique for the device with a preference for endoscopic placement, to assess the safety of the device through blood flow measurements, gross tissue examination and histological assessment and finally to demonstrate the efficacy of the device to lengthen the bowel in a chronic study. Device development will accompany each stage. The overall impact of this device will provide a low cost, safeand effective device to treat patients with short bowel syndrome in response to a tremendous unmet need for patients and their families. Variations of the CED may treat disease processes in other hollow visceral organs such as esophageal and intestinal atresia, ischemic and infection processes resulting in massive colon resection and congenital exstrophy. PUBLIC HEALTH RELEVANCE: The overall goal of this research proposal is to develop a catheter based device which will deliver linear forces resulting in the growth of the intestine. The catheter enterogenesis device (CED) is envisioned as a simple, minimally invasive and effective means of improving survival for short bowel syndrome sufferers.

Agency: Department of Health and Human Services | Branch: | Program: SBIR | Phase: Phase II | Award Amount: 1.19M | Year: 2011

DESCRIPTION (provided by applicant): Heart valve regurgitation is a serious condition related to heart disease. The most common and effective surgical method for treating this disease is with the use of an annuloplasty ring, which reduces the size of a dilated valve annulus to restore normal function. Many patients do not receive this procedure, however, either because they are too sick to undergo open heart surgery, or their condition has not yet progressed to the point at which surgery is justified. To address this large untreated patient population, many efforts have been undertaken to develop technology to repair leaky valves via catheter. Of these, the Millipede concept is the only device which can perform a true ring annuloplasty. This concept uses a ring that can both expand and contract under a radial force and has many small barbed anchors around its perimeter. After implant, a novel locking mechanism holds the ring at the desired diameter. The implantation process is performed by first inserting thedelivery tool, an oversized wire basket , into the annulus. This wire basket is larger than the annulus in diameter, but flexible enough to conform to the annular dimensions, which allows the user to find the annular tissue regardless of the size or shape of the annulus. Once placed in the annulus, the wires provide a series of rails, or delivery paths, over which the ring is delivered. The result is an automatic alignment of the ring and the annulus. Once aligned, a simple forward push of the ring drives the barbed anchors into the tissue and secures the ring in place. The basket is then contracted down and removed. In Phase II of this project we will surgically implant the prototypes developed in Phase I in animals. After developing a fully functionaldelivery system and conducting in vitro durability testing on the ring, we will perform percutaneous implants in animals. PUBLIC HEALTH RELEVANCE: The goal of this project is to develop a sutureless annuloplasty ring for the treatment of dilated, leaking heart valves. This will lead to an annuloplasty ring that can be implanted without surgery, which will benefit a significant number of patients who have valve disease but are not candidates for surgery.

Discover hidden collaborations