Mibe GmbH Arzneimittel

Brehna, Germany

Mibe GmbH Arzneimittel

Brehna, Germany
SEARCH FILTERS
Time filter
Source Type

Byrne J.,Mibe GmbH Arzneimittel | Velasco-Torrijos T.,National University of Ireland, Maynooth | Reinhardt R.,Mibe GmbH Arzneimittel
Journal of Pharmaceutical and Biomedical Analysis | Year: 2014

A novel stability-indicating reversed phase high performance liquid chromatographic (RP-HPLC) method for the simultaneous assay of betamethasone-17-valerate, fusidic acid and potassium sorbate as well as methyl- and propylparaben in a topical cream preparation has been developed. A 100. mm. ×. 3.0. mm ID. Ascentis Express C18 column maintained at 30. °C and UV detection at 240. nm were used. A gradient programme was employed at a flow-rate of 0.75. ml/min. Mobile phase A comprised of an 83:17 (v/v) mixture of acetonitrile and methanol and mobile phase B of a 10. g/l solution of 85% phosphoric acid in purified water. The method has been validated according to current International Conference on Harmonisation (ICH) guidelines and applied during formulation development and stability studies. The procedure has been shown to be stability-indicating for the topical cream. © 2014 Elsevier B.V.


Pfeifer C.,Mibe GmbH Arzneimittel | Fassauer G.,University of Greifswald | Gerecke H.,Mibe GmbH Arzneimittel | Jira T.,University of Greifswald | And 4 more authors.
Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences | Year: 2015

A suspension comprising of the three antibiotic substances amphotericin B, colistin sulfate and tobramycin sulfate is often used in clinical practice for the selective decontamination of the digestive tract of patients in intensive care. Since no detailed procedures, specifications or stability data are available for manufacturing this suspension, there may be discrepancies regarding formulation and stability of suspensions prepared in different pharmacies. The aim of this work is to develop a standardized formulation and to determine its stability under defined storage conditions. This would help guarantee that all patients receive the same preparation, therefore ensuring similar efficacy and improved safety. The first step in this process is to develop the required analytical tools to measure the content and purity of the drug substances in this complex mixture. In this paper, the development and validation of these tools as well as the development of the drug suspension formulation is described. The formulation comprises of Ampho-Moronal®-Suspension (Dermapharm) and a buffered, preservated aqueous solution of colistin sulfate and tobramycin sulfate. Two simple, well established high-performance liquid chromatography (HPLC) methods in the European Pharmacopoeia (EP) for impurity profiling of the two active ingredients amphotericin B and colistin sulfate were combined with a newly developed sample extraction procedure for the suspension. Sufficient selectivity and stability-indicating power have been demonstrated. Additionally, a new robust routine method was developed to determine possible degradation products of tobramycin sulfate in the investigated suspension. The specificity, precision, accuracy and linearity of the analytical procedures were demonstrated. The recovery rate was in the range of 90-110%. The precision results for the calculated impurities showed variation coefficients of <10%. The calibration curves were found to be linear with correlation of greater than 0.9994 for all components. The results show the suitability of the methods for the quality control analysis of the suspension. © 2015 Elsevier B.V.


PubMed | University of Greifswald, University of Leipzig and mibe GmbH Arzneimittel
Type: | Journal: Journal of chromatography. B, Analytical technologies in the biomedical and life sciences | Year: 2015

A suspension comprising of the three antibiotic substances amphotericin B, colistin sulfate and tobramycin sulfate is often used in clinical practice for the selective decontamination of the digestive tract of patients in intensive care. Since no detailed procedures, specifications or stability data are available for manufacturing this suspension, there may be discrepancies regarding formulation and stability of suspensions prepared in different pharmacies. The aim of this work is to develop a standardized formulation and to determine its stability under defined storage conditions. This would help guarantee that all patients receive the same preparation, therefore ensuring similar efficacy and improved safety. The first step in this process is to develop the required analytical tools to measure the content and purity of the drug substances in this complex mixture. In this paper, the development and validation of these tools as well as the development of the drug suspension formulation is described. The formulation comprises of Ampho-Moronal()-Suspension (Dermapharm) and a buffered, preservated aqueous solution of colistin sulfate and tobramycin sulfate. Two simple, well established high-performance liquid chromatography (HPLC) methods in the European Pharmacopoeia (EP) for impurity profiling of the two active ingredients amphotericin B and colistin sulfate were combined with a newly developed sample extraction procedure for the suspension. Sufficient selectivity and stability-indicating power have been demonstrated. Additionally, a new robust routine method was developed to determine possible degradation products of tobramycin sulfate in the investigated suspension. The specificity, precision, accuracy and linearity of the analytical procedures were demonstrated. The recovery rate was in the range of 90-110%. The precision results for the calculated impurities showed variation coefficients of <10%. The calibration curves were found to be linear with correlation of greater than 0.9994 for all components. The results show the suitability of the methods for the quality control analysis of the suspension.


Byrne J.,Mibe GmbH Arzneimittel | Velasco-Torrijos T.,National University of Ireland | Reinhardt R.,Mibe GmbH Arzneimittel
Journal of Chromatographic Science | Year: 2015

A topical pharmaceutical cream containing the active pharmaceutical ingredients (APIs) betamethasone-17-valerate and fusidic acid has been developed for the treatment of inflammatory skin conditions and associated secondary infections. In this work, a novel stability-indicating RP-HPLC method has been developed for the simultaneous quantitation of impurities of both APIs present in this cream. The HPLC column was a 150 mm × 4.6 mm I.D. YMC-Pack Pro C18 column with 3 μm particles. The column-oven temperature was maintained at 40°C and UV detection at 235 nm was used. A gradient programme was employed at a flow rate of 0.7 mL/min. Mobile phase A comprised of a 16:21:21:42 (v/v/v/v) mixture of methanol, 10 g/L phosphoric acid, HPLC grade water and acetonitrile. Mobile phase B comprised of a 24:5:5:66 (v/v/v/v) mixture of methanol, 10 g/L phosphoric acid, HPLC grade water and acetonitrile. The method has been validated according to current International Conference on Harmonisation (ICH) guidelines and applied during formulation development and stability studies. The procedure has been shown to be stability-indicating for the topical cream. © The Author 2015. Published by Oxford University Press.


PubMed | National University of Ireland and Mibe GmbH Arzneimittel
Type: | Journal: Pharmaceutical development and technology | Year: 2016

The formulation of betamethasone-17-valerate (BV) into topical medicines presents a significant challenge for the formulation chemist. The substance is susceptible to acid and base catalyzed isomerization in aqueous environments, which results in valerate transesterification from carbon 17 to carbon 21 of the steroid ring system. This acyl migration process is of significant clinical importance since the 21-valerate ester possesses only a fraction of the potency of the 17-valerate parent compound. Isomerization of BV should therefore be reduced to a minimum through design of a suitable drug vehicle. In this study, the effect of varying the concentration of several excipient components on the isomerization rate of betamethasone valerate in a model hydrophilic cream has been investigated. These excipients include the emulsifier macrogolstearylether-20/21, the co-emulsifier cetylstearyl alcohol and the thickening agent hydroxyl propyl methylcellulose. Additionally, the influence of pH, the presence of the antioxidant, alpha-tocopherol, as well as the chelating agent, disodium edetate, on the stability of the formulation have been investigated. Trial drug product formulations, which were designed to investigate the influence of the above-mentioned components/parameters were manufactured and their stability was tested according to current ICH Guidelines. The content, purity and crystalline structure of the active substance in these formulations was analyzed by a combination of HPLC and microscopy techniques. The study demonstrates that the rate of isomerization of betamethasone valerate depends significantly on the concentration of emulsifier used in the cream formulation. At higher concentrations of emulsifier the isomerization proceeds rapidly with significant degradation over a period of weeks, whereas at lower concentrations significant degradation may not be observed, even after several years storage. The influence of the emulsifier has been shown to be independent of the pH value of the aqueous phase of the cream. These findings have not been reported in previous literature reports on this topic, which have tended to focus on the influence of pH. The results are likely to be of interest to pharmaceutical chemists working on the formulation of glucocorticoids as well as to local- and hospital pharmacists who carry out the practice of dilution of proprietary corticoid preparations, where the choice of diluent is likely to be critical for ensuring the stability of the diluted product.


PubMed | National University of Ireland and Mibe GmbH Arzneimittel
Type: Journal Article | Journal: Journal of chromatographic science | Year: 2015

A topical pharmaceutical cream containing the active pharmaceutical ingredients (APIs) betamethasone-17-valerate and fusidic acid has been developed for the treatment of inflammatory skin conditions and associated secondary infections. In this work, a novel stability-indicating RP-HPLC method has been developed for the simultaneous quantitation of impurities of both APIs present in this cream. The HPLC column was a 150 mm 4.6 mm I.D. YMC-Pack Pro C18 column with 3 m particles. The column-oven temperature was maintained at 40C and UV detection at 235 nm was used. A gradient programme was employed at a flow rate of 0.7 mL/min. Mobile phase A comprised of a 16:21:21:42 (v/v/v/v) mixture of methanol, 10 g/L phosphoric acid, HPLC grade water and acetonitrile. Mobile phase B comprised of a 24:5:5:66 (v/v/v/v) mixture of methanol, 10 g/L phosphoric acid, HPLC grade water and acetonitrile. The method has been validated according to current International Conference on Harmonisation (ICH) guidelines and applied during formulation development and stability studies. The procedure has been shown to be stability-indicating for the topical cream.

Loading Mibe GmbH Arzneimittel collaborators
Loading Mibe GmbH Arzneimittel collaborators