Mianyang Institute of Agricultural science

Mianyang, China

Mianyang Institute of Agricultural science

Mianyang, China
Time filter
Source Type

He X.-L.,Sichuan Academy of Agricultural science | Li Q.,Sichuan Academy of Agricultural science | Li Q.,Jilin Agricultural University | Li Q.,Mianyang Institute of Agricultural science | And 8 more authors.
BMC Microbiology | Year: 2017

Background: The internal transcribed spacer (ITS), RNA polymerase II second largest subunit (RPB2), and elongation factor 1-alpha (EF1α) are often used in fungal taxonomy and phylogenetic analysis. As we know, an ideal molecular marker used in molecular identification and phylogenetic studies is homogeneous within species, and interspecific variation exceeds intraspecific variation. However, during our process of performing ITS, RPB2, and EF1α sequencing on the Pleurotus spp., we found that intra-isolate sequence polymorphism might be present in these genes because direct sequencing of PCR products failed in some isolates. Therefore, we detected intra- and inter-isolate variation of the three genes in Pleurotus by polymerase chain reaction amplification and cloning in this study. Results: Results showed that intra-isolate variation of ITS was not uncommon but the polymorphic level in each isolate was relatively low in Pleurotus; intra-isolate variations of EF1α and RPB2 sequences were present in an unexpectedly high amount. The polymorphism level differed significantly between ITS, RPB2, and EF1α in the same individual, and the intra-isolate heterogeneity level of each gene varied between isolates within the same species. Intra-isolate and intraspecific variation of ITS in the tested isolates was less than interspecific variation, and intra-isolate and intraspecific variation of RPB2 was probably equal with interspecific divergence. Meanwhile, intra-isolate and intraspecific variation of EF1α could exceed interspecific divergence. These findings suggested that RPB2 and EF1α are not desirable barcoding candidates for Pleurotus. We also discussed the reason why rDNA and protein-coding genes showed variants within a single isolate in Pleurotus, but must be addressed in further research. Conclusions: Our study demonstrated that intra-isolate variation of ribosomal and protein-coding genes are likely widespread in fungi. This has implications for studies on fungal evolution, taxonomy, phylogenetics, and population genetics. More extensive sampling of these genes and other candidates will be required to ensure reliability as phylogenetic markers and DNA barcodes. © 2017 The Author(s).

Ren Y.,Mianyang Institute of Agricultural Science | Singh R.P.,International Maize and Wheat Improvement Center | Basnet B.R.,International Maize and Wheat Improvement Center | Lan C.X.,International Maize and Wheat Improvement Center | And 3 more authors.
Plant Disease | Year: 2017

Leaf rust (LR) and stripe rust (YR) are important diseases of wheat worldwide. We used 148 recombinant inbred lines (RIL) from the cross of Avocet × Kundan for determining and mapping the genetic basis of adult plant resistance (APR) loci. The population was phenotyped LR and YR for three seasons in field trials conducted in Mexico and genotyped with the diversity arrays technology sequencing (DArT-Seq) and simple sequence repeat markers. The final genetic map was constructed using 2,937 polymorphic markers with an average distance of 1.29 centimorgans between markers. Inclusive composite interval mapping identified two co-located APR quantitative trait loci (QTL) for LR and YR, two LR QTL, and three YR QTL. The co-located resistance QTL on chromosome 1BL corresponded to the pleiotropic APR gene Lr46/Yr29. QLr.cim-2BL, QYr.cim-2AL, and QYr.cim-5AS could be identified as new resistance loci in this population. Lr46/Yr29 contributed 49.5 to 65.1 and 49.2 to 66.1% of LR and YR variations, respectively. The additive interaction between detected QTL showed that LR severities for RIL combining four QTL ranged between 5.3 and 25.8%, whereas the lowest YR severities were for RIL carrying QTL on chromosomes 1BL + 2AL + 6AL. The high-density DArT-Seq markers across chromosomes can be used in fine mapping of the targeted loci and development SNP markers. © 2017 The American Phytopathological Society.

Zhou Q.,Sichuan Agricultural University | Zhou Q.,Mianyang Institute of Agricultural science | Zhou Q.,Key Laboratory of Wheat and Rice Genetics and Breeding of the Ministry of Agriculture | Yuan Z.-W.,Sichuan Agricultural University | And 11 more authors.
Acta Agronomica Sinica | Year: 2015

Ailanmai is an important Triticum turgidum ssp. turgidum landrace carrying dwarf gene in China. Its dwarfing trait was found to be sensitive to gibberellic acid. In 2012, we crossed Ailanmai with two high plant landraces, Qinkemai and Ganmai, and obtained their reciprocal F1 hybrids. The genetic analysis was carried out in Mianyang, Sichuan Province using the F1, F2, and F2:3 populations during the 2012-2013 crop seasons. One recessive gene was proved to control the dwarfing trait in Ailanmai. Polymorphic simple sequence repeat (SSR) primers associated with plant height were selected through bulked segregant analysis (BSA) and used to identify the F2 individuals. The results indicated that the dwarf gene was located on the short arm of chromosome 7A with a genetic distance of 2.5 cM from marker GWM471. We speculated Rht22 to be the dwarf gene in Ailanmai because the reciprocal F1 and F2 hybrids between Ailanmai and Aiganfanmai (carrying Rht22) exhibited similar distributions in plant height. This speculation was validated with high-through molecular marker analysis. The percentages of identical SNP and DArT markers between Ailanmai and Aiganfanmai were as high as 98.7% and 99.3%, respectively. We conclude that the two landraces might be the same variety a long time ago and became synonymic during their spread accompanying with humanity activities. The dwarf gene in Ailanmai had a moderate or weak effect to reduce plant height in synthetic hexaploid wheat. Thus, it should be utilized by pyramiding other dwarfing genes in wheat dwarfing breeding.

Wang L.,Sichuan Agricultural University | Deng F.,Sichuan Agricultural University | Lu T.Q.,Mianyang Institute of Agricultural science | Zhao M.,Sichuan Agricultural University | And 3 more authors.
International Journal of Plant Production | Year: 2016

The measurement of carbon isotope discrimination (∆) provides an integrated insight into the response of plants to environmental change. To investigate the potential use of ∆ for identifying shade tolerance in rice, five rice varieties were selected and artificially shaded (53% light reduction) during the grain-filling period in 2010 and 2011, in Sichuan, China. Shading treatment had a significant influence on the ∆ of rice organs, resulting in clear increases in the ∆ of stems plus sheaths (∆Sm), rice grains (∆Gm) and rice flour (∆Fm) at maturity, but a reduction in the ∆ of leaves (∆Lg) at the grain-filling stage. The relationships between ∆ and leaf photosynthetic and chlorophyll fluorescence characteristics and grain yield showed a close dependence on plant organs and light regimes. Under shading treatment, photosynthetic rate was negatively associated with ∆Gm and the ∆ of stems plus sheaths at the grain-filling stage (∆Sg), whereas ∆Sm was significantly (P<0.05) negatively correlated with the quantum yield of PSII (ΦPSII), photochemical quenching (qP) and non-photochemical quenching (NPQ). Moreover, grain filling and grain weight under shading treatment were positively correlated with ∆Sg, but negatively related to ∆Sm in 2011. In contrast, a significantly (P<0.01) negative association between grain weight and ∆Lg was observed in 2010. It was found that lower values of ∆Lg, ∆Sm and ∆Gm in rice indicated better light-harvesting and light-use capability and also higher grain filling and grain weight of rice. © 2016, Gorgan Univ Agricultural Sciences and Natural Resources. All rights reserved.

Tan H.,Sichuan Agricultural University | Huang H.,Mianyang Institute of Agricultural science | Tie M.,Dazhou Institute of Agricultural science | Tang Y.,Sichuan Agricultural University | And 2 more authors.
PLoS ONE | Year: 2016

Cowpea (V. unguiculata L. Walp.) is an important tropical grain legume. Asparagus bean (V. unguiculata ssp. sesquipedialis) is a distinctive subspecies of cowpea, which is considered one of the top ten Asian vegetables. It can be adapted to a wide range of environmental stimuli such as drought and heat. Nevertheless, it is an extremely cold-sensitive tropical species. Improvement of chilling tolerance in asparagus bean may significantly increase its production and prolong its supply. However, gene regulation and signaling pathways related to cold response in this crop remain unknown. Using Illumina sequencing technology, modification of global gene expression in response to chilling stress in two asparagus bean cultivars - "Dubai bean" and "Ningjiang-3", which are tolerant and sensitive to chilling, respectively - were investigated. More than 1.8 million clean reads were obtained from each sample. After de novo assembly, 88,869 unigenes were finally generated with a mean length of 635 bp. Of these unigenes, 41,925 (47.18%) had functional annotations when aligned to public protein databases. Further, we identified 3,510 differentially expressed genes (DEGs) in Dubai bean, including 2,103 up-regulated genes and 1,407 down-regulated genes. While in Ningjiang-3, we found 2,868 DEGs, 1,786 of which were increasing and the others were decreasing. 1,744 DEGs were commonly regulated in two cultivars, suggesting that some genes play fundamental roles in asparagus bean during cold stress. Functional classification of the DEGs in two cultivars using Mercator pipeline indicated that RNA, protein, signaling, stress and hormone metabolism were five major groups. In RNA group, analysis of TFs in DREB subfamily showed that ICE1-CBF3-COR cold responsive cascade may also exist in asparagus bean. Our study is the first to provide the transcriptome sequence resource for asparagus bean, which will accelerate breeding cold resistant asparagus bean varieties through genetic engineering, and advance our knowledge of the genes involved in the complex regulatory networks of this plant under cold stress. © 2016 Tan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Ren Y.,Sichuan Agricultural University | Ren Y.,Mianyang Institute of Agricultural Science | Li S.-R.,Mianyang Institute of Agricultural Science | Wei Y.-M.,Sichuan Agricultural University | And 4 more authors.
Journal of Integrative Agriculture | Year: 2015

Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most damaging diseases of wheat. Chinese wheat cultivar Mianmai 41 showed high resistance against most of the prevailing Pst races in China. Genetic analysis of the F1, F2 and F2:3 populations from a cross between Mianmai 41 and a susceptible line Mingxian 169 indicated that resistance to Pst race CYR32 was conferred by a single dominant gene, temporarily designated as YrMY41. Molecular marker analysis placed the gene on chromosome 1B near the centromere. Six co-dominant genomic SSR markers Xwmc329, Xwmc406, Xgwm18, Xgwm131, Xgwm413, and Xbarc312, and one STS marker Xwe173 linked with the resistance gene. The two closest flanking SSR markers were Xgwm18 and Xwmc406, with genetic distances of 2.0 and 4.9 cM, respectively. A seedling test with 29 Pst isolates indicated the reaction patterns of Mianmai 41 were different from those of lines carrying Yr3, Yr9, Yr10, Yr15, Yr26, and YrCH42 on chromosome 1B. Allelic tests indicated that YrMY41 is likely a new allele at Yr26 locus. © 2015 Chinese Academy of Agricultural Sciences.

Ren Y.,Sichuan Agricultural University | Li S.,Mianyang Institute of Agricultural science | Luo J.,Mianyang Institute of Agricultural science | He Z.,Chinese Academy of Agricultural Sciences | And 5 more authors.
Yi chuan = Hereditas / Zhongguo yi chuan xue hui bian ji | Year: 2014

The development and utilization of outstanding germplasm in breeding programs can expedite breeding process. The high yielding variety Mianmai 37, grown widely in southwestern China, has been used widely in breeding programs. Comparisons between Mianmai 37 and its derivatives for yield and yield components were conducted. Simple sequence repeat (SSR) markers were used to test the frequency of specific alleles transferred from Mianmai 37 to its derivative culti-var Mianmai 367. The results indicated that the yield of the derivative cultivars was significantly higher than Mianmai 37, due to an increased grain number per spike. Favorable traits from Mianmai 37 such as resistance to stripe rust, were trans-ferred to its derivatives. At molecular level, 78.9% loci in Mianmai 367 were derived from Mianmai 37 with 75.0, 83.6 and 74.2% from A, B and D genomes, respectively. Mianmai 367 shared common loci with its parent Mianmai 37, such as re-gions Xgwm374-Xbarc167-Xbarc128-Xgwm129-Xgwm388-Xbarc101 on chromosome 2B and Xwmc446-Xwmc366- Xwmc533-Xbarc164-Xwmc418 on chromosome 3B, these regions were associated with grain number, 1000-kernel weight and resistance. The preferred transmission of alleles from Mianmai 37 to its derivatives probably can be explained by the strong selection pressures because of its favorable agronomic traits and the disease resistance.

Loading Mianyang Institute of Agricultural science collaborators
Loading Mianyang Institute of Agricultural science collaborators