Time filter

Source Type

Grant
Agency: European Commission | Branch: H2020 | Program: ERA-NET-Cofund | Phase: SC5-02-2015 | Award Amount: 78.28M | Year: 2016

Within the European Research Area (ERA), the ERA4CS Consortium is aiming to boost, research for Climate Services (CS), including climate adaptation, mitigation and disaster risk management, allowing regions, cities and key economic sectors to develop opportunities and strengthen Europes leadership. CS are seen by this consortium as driven by user demands to provide knowledge to face impacts of climate variability and change, as well as guidance both to researchers and decisionmakers in policy and business. ERA4CS will focus on the development of a climate information translation layer bridging user communities and climate system sciences. It implies the development of tools, methods, standards and quality control for reliable, qualified and tailored information required by the various field actors for smart decisions. ERA4CS will boost the JPI Climate initiative by mobilizing more countries, within EU Member States and Associated Countries, by involving both the research performing organizations (RPOs) and the research funding organizations (RFOs), the distinct national climate services and the various disciplines of academia, including Social Sciences and Humanities. ERA4CS will launch a joint transnational co-funded call, with over 16 countries and up to 75M, with two complementary topics: (i) a cash topic, supported by 12 RFOs, on co-development for user needs and action-oriented projects; (ii) an in-kind topic, supported by 28 RPOs, on institutional integration of the research components of national CS. Finally, ERA4CS additional activities will initiate a strong partnership between JPI Climate and others key European and international initiatives (as Copernicus, KIC-Climate, JPIs, WMO/GFCS, Future Earth, Belmont Forum) in order to work towards a common vision and a multiyear implementation strategy, including better co-alignment of national programs and activities up to 2020 and beyond.


Grant
Agency: European Commission | Branch: FP7 | Program: CP-CSA-Infra | Phase: INFRA-2012-1.1.15. | Award Amount: 11.18M | Year: 2013

IS-ENES2 is the second phase project of the distributed e-infrastructure of models, model data and metadata of the European Network for Earth System Modelling (ENES). This network gathers together the European modelling community working on understanding and predicting climate variability and change. ENES organizes and supports European contributions to international experiments used in assessments of the Intergovernmental Panel on Climate Change. This activity provides the predictions on which EU mitigation and adaptation policies are built. IS-ENES2 further integrates the European climate modelling community, stimulates common developments of software for models and their environments, fosters the execution and exploitation of high-end simulations and supports the dissemination of model results to the climate research and impact communities. IS-ENES2 implements the ENES strategy published in 2012 by: extending its services on data from global to regional climate models, supporting metadata developments based on the FP7 METAFOR project, easing access to climate projections for studies on climate impact and preparing common high-resolution modeling experiments for the large European computing facilities. IS-ENES2 also underpins the communitys efforts to prepare for the challenge of future exascale architectures. IS-ENES2 combines expertise in climate modelling, computational science, data management and climate impacts. The central point of entry to IS-ENES2 services, the ENES Portal, integrates information on the European climate models and provides access to models and software environments needed to run and exploit model simulations, as well as to simulation data, metadata and processing utilities. Joint research activities improve the efficient use of high-performance computers and enhance services on models and data. Networking activities increase the cohesion of the European ESM community and advance a coordinated European Network for Earth System modelling.


Grant
Agency: European Commission | Branch: H2020 | Program: CSA | Phase: SPACE | Award Amount: 6.00M | Year: 2014

The main objective of the MyOcean Follow On project will be to operate a rigorous, robust and sustainable Ocean Monitoring and Forecasting component of the pre-operational Copernicus Marine Service delivering ocean physical state and ecosystem information to intermediate and downstream users in the areas of marine safety, marine resources, marine and coastal environment and weather, climate and seasonal forecasting. This is highly consistent with the objective of the HORIZON 2020 Work Programme 2014-2015 establishing the need for interim continuity of the pre-operational services developed by MyOcean 2 before the fully operational services of Copernicus. The project proposes to sustain the current pre-operational marine activities until March 2015 in order to avoid any interruption in the critical handover phase between pre-operational and fully operational services. In effect, any significant interruption in these services could potentially jeopardize several important high-level policy objectives and undermine other related scientific activities. In the period from October 2014 to March 2015, MyOcean-FO will ensure a controlled continuation and extension of the services already implemented in MyOcean and MyOcean2 FP7 projects that have advanced the pre-operational marine service capabilities. To enable the move to full operations, MyOcean-FO is targeting the prototype operations, and developing the management and coordination to continue the provision of Copernicus Marine service products and the link with independent R&D activities. MyOcean-FO will produce and deliver services based upon the common-denominator ocean state variables that are required to help meet the needs for information for environmental and civil security policy making, assessment and implementation. MyOcean-FO is also expected to have a significant impact on the emergence of a technically robust and sustainable Copernicus Service infrastructure in Europe.


Grant
Agency: European Commission | Branch: H2020 | Program: CSA | Phase: SPACE | Award Amount: 5.00M | Year: 2014

MACC-III is the last of the pre-operational stages in the development of the Copernicus Atmosphere Service. Its overall institutional objective is to function as the bridge between the developmental precursor projects - GEMS, PROMOTE, MACC and MACC-II- and the Atmosphere Service envisaged to form part of Copernicus Operations. MACC-III will provide continuity of the atmospheric services provided by MACC-II. Its continued provision of coherent atmospheric data and information, either directly or via value-adding downstream services, is for the benefit of European citizens and helps meet global needs as a key European contribution to the Global Climate Observing System (GCOS) and the encompassing Global Earth Observation System of Systems (GEOSS). Its services cover in particular: air quality, climate forcing, stratospheric ozone, UV radiation and solar-energy resources. MACC-IIIs services are freely and openly available to users throughout Europe and in the world. MACC-III and its downstream service sector will enable European citizens at home and abroad to benefit from improved warning, advisory and general information services and from improved formulation and implementation of regulatory policy. MACC-III, together with its scientific-user sector, also helps to improve the provision of science-based information for policy-makers and for decision-making at all levels. The most significant economic benefit by far identified in the ESA-sponsored Socio-Economic Benefits Analysis of Copernicus report published in July 2006 was the long-term benefit from international policy on climate change. Long-term benefit from air quality information ranked second among all Copernicus benefits in terms of present value. Immediate benefits can be achieved through efficiency gains in relation to current policies. The estimated benefits substantially outweigh the costs of developing and operating the proposed services.


Grant
Agency: European Commission | Branch: FP7 | Program: CP | Phase: ENV.2013.6.1-1 | Award Amount: 11.52M | Year: 2014

The ICE-ARC project aims to understand and quantify the multiple stresses involved in the change in the Arctic marine environment. Particular focus is on the rapid retreat and collapse of the Arctic sea ice cover and to assess the climatic (ice, ocean, atmosphere and ecosystem), economic and social impacts of these stresses on regional and global scales. It is not possible to look at one aspect of this system in isolation; a coupled atmosphere/cryosphere/ocean/ecosystem approach is needed. Our observations will focus on reducing the uncertainty in understanding of Arctic physical processes which are vital in climate and ecosystem change and which may not be adequately represented in present models. Results of the observational programme will be fed into an ice-ocean-atmosphere model which, after validation, will make projections - with reduced uncertainties - of the rate and nature of future changes in the ice cover, ocean structure and atmospheric temperature and circulation. In parallel with this an ecosystems model will perform the same role for marine living resources. The resulting projections of the two models will be fed into an economic impact model (PAGE-ICE) that is specially reconfigured for cryosphere-driven impacts. This will calculate the impacts of the projected physical changes upon the global economic and social system, including those of the Arctic region itself. This will be the first time that a leading global impact model has been coupled with a physical climate model to directly assess the economic impact of observed and projected climate change events. It is being applied to the oceanic region of greatest current concern to the global community because of the speed of visible change there. The outputs of the entire project, will undoubtedly lead to more effective policy and management options for societal responses to climate change, and because of this we have an extensive dissemination and engagement programme within ICE-ARC.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: INFRAIA-1-2014-2015 | Award Amount: 10.13M | Year: 2015

ACTRIS-2 addresses the scope of integrating state-of-the-art European ground-based stations for long term observations of aerosols, clouds and short lived gases capitalizing work of FP7-ACTRIS. ACTRIS-2 aims to achieve the construction of a user-oriented RI, unique in the EU-RI landscape. ACTRIS-2 provides 4-D integrated high-quality data from near-surface to high altitude (vertical profiles and total-column), relevant to climate and air-quality research. ACTRIS-2 develops and implements, in a large network of stations in Europe and beyond, observational protocols that permit harmonization of collected data and their dissemination. ACTRIS-2 offers networking expertise, upgraded calibration services, training of users, trans-national access to observatories and calibration facilities, virtual access to high-quality data products. Through joint research activities, ACTRIS-2 develops new integration tools that will produce scientific or technical progresses reusable in infrastructures, thus shaping future observation strategies. Innovation in instrumentation is one of the fundamental building blocks of ACTRIS-2. Associated partnership with SMEs stimulates development of joint-ventures addressing new technologies for use in atmospheric observations. Target user-groups in ACTRIS-2 comprise a wide range of communities worldwide. End-users are institutions involved in climate and air quality research, space agencies, industries, air quality agencies. ACTRIS-2 will improve systematic and timely collection, processing and distribution of data and results for use in modelling, in particular towards implementation of atmospheric and climate services. ACTRIS-2 invests substantial efforts to ensure long-term sustainability beyond the term of the project by positioning the project in both the GEO and the on-going ESFRI contexts, and by developing synergies with national initiatives.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: BG-10-2016 | Award Amount: 8.72M | Year: 2016

Arctic climate change increases the need of a growing number of stakeholders for trustworthy weather and climate predictions, both within the Arctic and beyond. APPLICATE will address this challenge and develop enhanced predictive capacity by bringing together scientists from academia, research institutions and operational prediction centres, including experts in weather and climate prediction and forecast dissemination. APPLICATE will develop a comprehensive framework for observationally constraining and assessing weather and climate models using advanced metrics and diagnostics. This framework will be used to establish the performance of existing models and measure the progress made within the project. APPLICATE will make significant model improvements, focusing on aspects that are known to play pivotal roles in both weather and climate prediction, namely: the atmospheric boundary layer including clouds; sea ice; snow; atmosphere-sea ice-ocean coupling; and oceanic transports. In addition to model developments, APPLICATE will enhance predictive capacity by contributing to the design of the future Arctic observing system and through improved forecast initialization techniques. The impact of Arctic climate change on the weather and climate of the Northern Hemisphere through atmospheric and oceanic linkages will be determined by a comprehensive set of novel multi-model numerical experiments using both coupled and uncoupled ocean and atmosphere models. APPLICATE will develop strong user-engagement and dissemination activities, including pro-active engagement of end-users and the exploitation of modern methods for communication and dissemination. Knowledge-transfer will also benefit from the direct engagement of operational prediction centres in APPLICATE. The educational component of APPLICATE will be developed and implemented in collaboration with the Association of Early Career Polar Scientists (APECS).


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: EO-1-2014 | Award Amount: 3.00M | Year: 2015

The main objective of this proposal is to develop new methods to retrieve sea ice parameters from existing (and imminent) satellite sensors to provide enhanced products for polar operators and prediction systems, specifically addressing extreme and unexpected conditions. Automatic remote sensing products traditionally provide general information on sea ice conditions such as ice extent and concentration. However, for ice charting, tactical navigation and management of off-shore activities much more important is to know and avoid hazardous sea ice conditions. In general, sea ice hazards are related to sea ice thickness. More often than not polar ships and off-shore platforms are only operating during summer seasons and certain regions. This is because they are designed to resist typical forces of induced by pack ice, but they are not designed to resist the extreme sea ice conditions. Ongoing climate warming has manifested as shrinking and thinning of pack ice in the Arctic. This is a primary driver for the increasing shipping, oil and gas explorations and mining activities in the Arctic. However, severe sea ice conditions still exist and in consequence many locations are impossible for ship based operations. Moreover, year-to-year variability of sea ice is very large and hazardous multiyear ice (MYI) floes sometimes appear also in typically seasonally ice free regions. In order to response needs of increase polar activities, we propose to focus on detection of sea ice extremes and automatic production of sea ice warnings products. In particular, we aim for a detection of MYI floes in a area composed mostly first-year ice from synthetic aperture radar (SAR), heavily ridged ice regions from SAR, the thickest ice from radar altimeter (RA) thickness profiles, regional anomalies of thick or thin ice via passive microwave (PMW) data, sea ice areas vulnerable for the wave action, detection of early/late melting season and improving capabilities to forecast seasonal sea ice extremes.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: DRS-09-2014 | Award Amount: 7.28M | Year: 2015

It is presently acknowledged and scientifically proven than climate related hazards have the potential to substantially affect the lifespan and effectiveness or even destroy of European Critical Infrastructures (CI), particularly the energy, transportation sectors, buildings, marine and water management infrastructure with devastating impacts in EU appraising the social and economic losses. The main strategic objective of EU-CIRCLE is to move towards infrastructure network(s) that is resilient to todays natural hazards and prepared for the future changing climate. Furthermore, modern infrastructures are inherently interconnected and interdependent systems ; thus extreme events are liable to lead to cascade failures. EU-CIRCLEs scope is to derive an innovative framework for supporting the interconnected European Infrastructures resilience to climate pressures, supported by an end-to-end modelling environment where new analyses can be added anywhere along the analysis workflow and multiple scientific disciplines can work together to understand interdependencies, validate results, and present findings in a unified manner providing an efficient Best of Breeds solution of integrating into a holistic resilience model existing modelling tools and data in a standardised fashion. It, will be open & accessible to all interested parties in the infrastructure resilience business and having a confirmed interest in creating customized and innovative solutions. It will be complemented with a webbased portal.The design principles, offering transparency and greater flexibility, will allow potential users to introduce fully tailored solutions and infrastructure data, by defining and implementing customised impact assessment models, and use climate / weather data on demand.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: SC5-01-2014 | Award Amount: 15.00M | Year: 2015

CRESCENDO brings together seven Earth System Modelling (ESM) groups with three Integrated Assessment Modelling teams, as well as experts in ESM evaluation, ESM projection and feedback analysis, climate impacts and science communication to address the following goals; (i) improve the process-realism and simulation-quality of European ESMs in order to increase the reliability of future Earth system projections; (ii) develop and apply a community ESM evaluation tool allowing routine ESM performance benchmarking, process-based ESM evaluation and the analysis of Earth system projections. The resulting tool will be installed and made openly-available on the Earth System Grid Federation (ESGF); (iii) further develop the discipline of emergent constraints in order to better constrain the representation of key biogeochemical and aerosol feedbacks in ESMs and thereby reduce overall uncertainty in Earth system projections; (iv) quantify the effective radiative forcing of key biogeochemical and aerosol feedbacks in ESM projections; (v) contribute to the development of a new set of combined socio-economic and climate emission scenarios that more explicitly link future socio-economic development pathways with global radiative forcing; (vi) apply the project ESMs to these new scenario data to generate an ensemble of Earth system projections for the coming century and, in combination with the underlying socio-economic scenarios, use these projections to assess joint risks and co-benefits related to climate change, climate impacts, adaptation and mitigation; (vii) ensure data produced by CRESCENDO is available to the international community through timely archival on the ESGF and work closely with climate impact assessment and regional downscaling teams to ensure maximum uptake and use of these data in such complementary areas of science; (viii) actively disseminate knowledge generated in CRESCENDO to fellow scientists, policymakers and the general public.

Loading Meteorologisk Institutt collaborators
Loading Meteorologisk Institutt collaborators