Metabolic Diseases Research

Cambridge, MA, United States

Metabolic Diseases Research

Cambridge, MA, United States
SEARCH FILTERS
Time filter
Source Type

Wang M.,Pfizer | Tian X.,Pfizer | Leung L.,Wyeth research | Wang J.,Wyeth research | And 6 more authors.
Drug Metabolism Letters | Year: 2011

Diet-induced obese (DIO) mice have been commonly used as an animal model in the efficacy assessment for new drug candidates. Although high-fat feeding has been reported to cause profound physiological changes, including the expression of drug-metabolizing enzymes, limited studies have been reported regarding the effect of obesity/diabetes on pharmacokinetics (PK) in animals. In this study, we investigated PK profiles of three 11β-HSD-1 inhibitors in the DIO mice and compared them to the normal lean mice. After oral administration, the in vivo exposure (AUC) of all three compounds was higher in DIO mice, which was consistent with the observed lower systemic clearance (CL) in DIO mice compared to lean mice. As illustrated by Compound E, a compound metabolized predominantly by CYP3A and 2C, the metabolic profiles for Compound E were qualitatively similar between DIO and lean mice, but quantitatively lower in the DIO mice. Indeed, P-450 activities for CYP3A and 2C as well as 2D were found to be lower in liver microsomes prepared from DIO mice. The calculated hepatic clearance (CLH) from in vitro studies with liver microsomes correlated well with the observed in vivo clearance for both DIO and lean mice. The calculated oral bioavailability (F%) based on intrinsic hepatic clearance (CLH, int) predicted ~3 fold increase in F% for the DIO mice, which was comparable to the observed value. Collectively, these data suggest that the higher F% is most likely due to the lower first-pass effect in DIO mice. This study highlights the needs to take caution when extrapolating PK and exposure data from healthy animals to diseased animals in designing pharmacological studies. © 2011 Bentham Science Publishers Ltd.


Capel F.,Institute Of Recherches Servier | Capel F.,University of Cambridge | Delmotte M.H.,Metabolic Diseases Research | Brun M.,Metabolic Diseases Research | And 9 more authors.
Journal of Nutrigenetics and Nutrigenomics | Year: 2011

Background: Aging and obesity induce complex transcriptomic changes in the liver, promoting the development of insulin resistance and type 2 diabetes. In spite of an increasing amount of studies on the role of aging and nutrient excess in metabolic disorders, the specific molecular events leading to insulin resistance are still poorly understood. Methods: This study presents a comparative analysis of hepatic gene expression profiles between young adult C57BL/6J mice fed with a low- or a high-fat diet for 1 and 12 months. We evaluated the expression of a defined set of genes implicated in glucose and lipid metabolism as well as key nuclear receptors and their target genes, IGF1 signaling and clock genes. Results: Aging and short-term high-fat consumption induced insulin resistance, albeit through two distinct processes. Hepatic gene expression changes were more pronounced in the context of aging. We further analyzed expression profiles together with plasma parameters by principal component analysis with regard to diet condition. Conclusions: Our results suggest that in the liver of C57BL/6J mice, the molecular mechanisms underlying high-fat feeding or aging which mediated insulin resistance were not identical. Copyright © 2011 S. Karger AG, Basel.

Loading Metabolic Diseases Research collaborators
Loading Metabolic Diseases Research collaborators