Entity

Time filter

Source Type

Sterling City, TX, United States

Nicovich J.M.,Georgia Institute of Technology | Mazumder S.,Georgia Institute of Technology | Laine P.L.,Georgia Institute of Technology | Laine P.L.,Mercury Experts LLC | And 4 more authors.
Physical Chemistry Chemical Physics | Year: 2015

The rate coefficients for the reactions of Cl(2PJ) with methylamine (R1), dimethylamine (R2) and trimethylamine (R3) have been measured using the laser flash photolysis - resonance fluorescence technique as a function of temperature (274-435 K) and pressure (25-400 Torr N2). The experimental data are well-represented by the following temperature- and pressure-independent rate coefficients (1010 × k/cm3 molecule-1 s-1): kR1 = 2.90 ± 0.44, kR2 = 3.89 ± 0.58, kR3 = 3.68 ± 0.55; the uncertainties are estimates of accuracy at the 95% confidence level. Potential energy surfaces (PES) for the reactions have been characterized at the MP2/cc-pVTZ level and improved single point energies of stationary points obtained in CCSD(T)-F12a calculations. The PES for all reactions are characterized by the formation of pre and post reaction complexes and submerged barriers. Rate coefficients for the reactions were calculated as a function of temperature and pressure using a master equation model based on the coupled cluster theory results. The calculated rate coefficients are in good agreement with experiment; the overall rate coefficients are relatively insensitive to variations of the barrier heights within typical chemical accuracy, but the predicted branching ratios vary significantly. The inclusion of tunnelling has no effect. © the Owner Societies 2015. Source


Lan X.,University of Houston | Talbot R.,University of Houston | Laine P.,University of Houston | Laine P.,Mercury Experts LLC | Torres A.,University of Houston
Environmental Science and Technology | Year: 2015

Atmospheric methane (CH4) was measured using a mobile laboratory to quantify fugitive CH4 emissions from Oil and Natural Gas (ONG) operations in the Barnett Shale area. During this Barnett Coordinated Campaign we sampled more than 152 facilities, including well pads, compressor stations, gas processing plants, and landfills. Emission rates from several ONG facilities and landfills were estimated using an Inverse Gaussian Dispersion Model and the Environmental Protection Agency (EPA) Model AERMOD. Model results show that well pads emissions rates had a fat-tailed distribution, with the emissions linearly correlated with gas production. Using this correlation, we estimated a total well pad emission rate of 1.5 × 105 kg/h in the Barnett Shale area. It was found that CH4 emissions from compressor stations and gas processing plants were substantially higher, with some "super emitters" having emission rates up to 3447 kg/h, more then 36,000-fold higher than reported by the Environmental Protection Agency (EPA) Greenhouse Gas Reporting Program (GHGRP). Landfills are also a significant source of CH4 in the Barnett Shale area, and they should be accounted for in the regional budget of CH4. (Figure Presented). © 2015 American Chemical Society. Source


Lan X.,University of Houston | Talbot R.,University of Houston | Laine P.,University of Houston | Laine P.,Mercury Experts LLC | And 3 more authors.
Environmental Science and Technology | Year: 2015

Atmospheric mercury emissions in the Barnett Shale area were studied by employing both stationary measurements and mobile laboratory surveys. Stationary measurements near the Engle Mountain Lake showed that the median mixing ratio of total gaseous mercury (THg) was 138 ppqv (140 ± 29 ppqv for mean ± S.D.) during the June 2011 study period. A distinct diurnal variation pattern was observed in which the highest THg levels appeared near midnight, followed by a monotonic decrease until midafternoon. The influence of oil and gas (ONG) emissions was substantial in this area, as inferred from the i-pentane/n-pentane ratio (1.17). However, few THg plumes were captured by our mobile laboratory during a ∼3700 km survey with detailed downwind measurements from 50 ONG facilities. One compressor station and one natural gas condensate processing facility were found to have significant THg emissions, with maximum THg levels of 963 and 392 ppqv, respectively, and the emissions rates were estimated to be 7.9 kg/yr and 0.3 kg/yr, respectively. Our results suggest that the majority of ONG facilities in this area are not significant sources of THg; however, it is highly likely that a small number of these facilities contribute a relatively large amount of emissions in the ONG sector. (Graph Presented). © 2015 American Chemical Society. Source

Discover hidden collaborations