Time filter

Source Type

Uppsala, Sweden

Rydgren T.,Uppsala University | Borjesson A.,Uppsala University | Carlsson A.,Mercodia AB | Sandler S.,Uppsala University
Biochemical and Biophysical Research Communications | Year: 2012

The incretin glucagon-like peptide-1 (GLP-1) and other GLP-1 receptor agonists have been shown to cause both antiapoptotic as well as regenerative effects on beta-cells in different animal models for diabetes. Our aim of this study was to test the hypothesis that spontaneously diabetic non obese diabetic (NOD) mice show an altered expression of GLP-1 compared to normoglycemic age-matched controls as a consequence of a diabetic state. To do this we used an ELISA prototype for mouse GLP-1 to measure plasma total GLP-1 from recently diabetic NOD mice as well as from age-matched normoglycemic NOD mice (controls). We also stained sections of pancreatic glands for GLP-1 from diabetic NOD mice and controls. We found increased levels of plasma total GLP-1 in diabetic NOD mice, when compared to control mice, both from non-fasted mice and from mice fasted for 2. h. Furthermore, diabetic NOD mice displayed a higher GLP-1 response to an oral glucose tolerance test, compared to control mice. We also found that sections of pancreatic glands from diabetic NOD mice had an increased GLP-1 positive islet area in regard to relative islet area (i.e. total islet area/total pancreas area of the sections) compared to control mice. To our knowledge, this study is the first to show increased levels of GLP-1 in plasma in spontaneously diabetic NOD mice. We suggest that these results might represent a compensatory mechanism of the diabetic NOD mice to counteract beta-cell loss and hyperglycemia. © 2012 Elsevier Inc.

Hayes R.,MPI Research | LeLacheur R.,Agilux Laboratories | Dumont I.,Algorithme Pharma Inc. | Couerbe P.,Atlanbio | And 59 more authors.
Bioanalysis | Year: 2016

The 9th GCCClosed Forum was held just prior to the 2015 Workshop on Recent Issues in Bioanalysis (WRIB) in Miami, FL, USA on 13 April 2015. In attendance were 58 senior-level participants, from eight countries, representing 38 CRO companies offering bioanalytical services. The objective of this meeting was for CRO bioanalytical representatives to meet and discuss scientific and regulatory issues specific to bioanalysis. The issues selected at this year's closed forum include CAPA, biosimilars, preclinical method validation, endogenous biomarkers, whole blood stability, and ELNs. A summary of the industry's best practices and the conclusions from the discussion of these topics is included in this meeting report. © 2016 Future Science Ltd.

Martin R.M.,University of Bristol | Patel R.,University of Bristol | Zinovik A.,National Research and Applied Medicine | Kramer M.S.,McGill University | And 8 more authors.
PLoS ONE | Year: 2012

Background: In large-scale epidemiology, bloodspot sampling by fingerstick onto filter paper has many advantages, including ease and low costs of collection, processing and transport. We describe the development of an enzyme-linked immunoassay (ELISA) for quantifying insulin from dried blood spots and demonstrate its application in a large trial. Methods: We adapted an existing commercial kit (Mercodia Human Insulin ELISA, 10-1113-01) to quantify insulin from two 3-mm diameter discs (≈6 μL of blood) punched from whole blood standards and from trial samples. Paediatricians collected dried blood spots in a follow-up of 13,879 fasted children aged 11.5 years (interquartile range 11.3-11.8 years) from 31 trial sites across Belarus. We quantified bloodspot insulin levels and examined their distribution by demography and anthropometry. Results: Mean intra-assay (n = 157) coefficients of variation were 15% and 6% for 'low' (6.7 mU/L) and 'high' (23.1 mU/L) values, respectively; the respective inter-assay values (n = 33) were 23% and 11%. The intraclass correlation coefficient between 50 paired whole bloodspot versus serum samples, collected simultaneously, was 0.90 (95% confidence interval 0.85 to 0.95). Bloodspot insulin was stable for at least 31 months at -80°C, for one week at +30°C and following four freeze-thaw cycles. Paediatricians collected a median of 8 blood spots from 13,487 (97%) children. The geometric mean insulin (log standard deviation) concentrations amongst 12,812 children were 3.0 mU/L (1.1) in boys and 4.0 mU/L (1.0) in girls and were positively associated with pubertal stage, measures of central and peripheral adiposity, height and fasting glucose. Conclusions: Our simple and convenient bloodspot assay is suitable for the measurement of insulin in very small volumes of blood collected on filter paper cards and can be applied to large-scale epidemiology studies of the early-life determinants of circulating insulin. © 2012 Martin et al.

Carlsson A.,Mercodia AB | Carlsson A.,Uppsala University | Hallgren I.-B.,Uppsala University | Johansson H.,Mercodia AB | Sandler S.,Uppsala University
Endocrinology | Year: 2010

Until now, there have been few assays to measure C-peptide and proinsulin in the rat. We used a well-established rat insulin ELISA and validated two novel ELISAs for rat C-peptide and rat/mouse proinsulin to examine secretion and content of insulin, proinsulin, and C-peptide from rat islets cultured for 72 h at different glucose concentrations in culture medium. To examine long-term effects in vitro rather than short-term effects of exposure to low, normal, and high glucose, the exposure time to the different glucose concentrations was set to 72 h. The measurement uncertainty of the values obtainable from the ELISAs was determined by calculation of the variation pattern from the intraassay variation generated by unknown samples, and repeatability was determined by analysis of controls. The precision study and the analysis of controls confirm that the validated ELISAs for rat C-peptide and proinsulin would be useful for further studies on the effects of preculture in different glucose concentrations. The higher the glucose concentration used during the 72-h culture period of rat islets, the higher insulin, C-peptide and proinsulin values were obtained in a subsequent short-term glucose-challenge experiment. The proportion of proinsulin to insulin secreted increased, as did islet content, with increasing glucose concentration during preculture. We also observed a nonequimolar, glucose-dependent secretion and content of rat insulin over rat C-peptide after culture at 11.1 and 28 mM glucose. Copyright © 2010 by The Endocrine Society.

Discover hidden collaborations