Time filter

Source Type

Palo Alto, CA, United States

Parry D.,Merck Research Laboratory Palo Alto | Guzi T.,Merck Research Laboratory Kenilworth | Guzi T.,Merck Research Laboratory Cambridge | Shanahan F.,Merck Research Laboratory Palo Alto | And 17 more authors.
Molecular Cancer Therapeutics | Year: 2010

Cyclin-dependent kinases (CDK) are key positive regulators of cell cycle progression and attractive targets in oncology. SCH 727965 inhibits CDK2, CDK5, CDK1, and CDK9 activity in vitro with IC50 values of 1, 1, 3, and 4 nmol/L, respectively. SCH 727965 was selected as a clinical candidate using a functional screen in vivo that integrated both efficacy and safety parameters. Compared with flavopiridol, SCH 727965 exhibits superior activity with an improved therapeutic index. In cell-based assays, SCH 727965 completely suppressed retinoblastoma phosphorylation, which correlated with apoptosis onset and total inhibition of bromodeoxyuridine incorporation in >100 tumor cell lines of diverse origin and background. Moreover, short exposures to SCH 727965 were sufficient for long-lasting cellular effects. SCH 727965 induced regression of established solid tumors in a range of mouse models following intermittent scheduling of doses below the maximally tolerated level. This was associated with modulation of pharmacodynamic biomarkers in skin punch biopsies and rapidly reversible, mechanism-based effects on hematologic parameters. These results suggest that SCH 727965 is a potent and selective CDK inhibitor and a novel cytotoxic agent. ©2010 AACR.

Taricani L.,Merck Research Laboratory Palo Alto | Taricani L.,Novartis | Shanahan F.,Merck Research Laboratory Palo Alto | Pierce R.H.,Merck Research Laboratory Palo Alto | And 2 more authors.
Cell Cycle | Year: 2010

Inhibition of thymidine biosynthesis is a clinically-validated therapeutic approach for multiple cancers. Inhibition of thymidylate synthetase (TS) leads to a decrease in cellular TTP levels, replication stress and increased genomic incorporation of uridine (dUMP). Thus, inhibitors of this pathway (such as methotrexate) can drive a multitude of downstream cell cycle checkpoint and DNA repair processes. Genomic dUMP is recognized by the base excision repair (BER) pathway. Using a synthetic lethal siRNA-screening approach, we systematically screened for components of BER that, when ablated, enhanced methotrexate response in a high content γ-H2A.X bioassay. We observed specific ablation of the mixed function DNA glycosylase/lyase Neil1 phenotypically enhanced several inhibitors of thymidine biosynthesis, as well as cellular phenotypes downstream of gemcitabine, cytarabine and clofarabine exposure. These synthetic lethal interactions were associated with significantly enhanced accumulation of γ-H2A.X and improved growth inhibition. Significantly, following TS pathway inhibition, addition of exogenous dTTP complemented the primary Neil1 γ-H2A.X phenotypes. Similarly, co-depletion of Neil1 with Cdc45, Cdc6, Cdc7 or DNA polymerase β (PolB) suppressed Neil1 phenotypes. Conversely, co-depletion of Neil1 with the Rad17, Rad9 ATR, ATM and DNA-PK checkpoint/sensor proteins appears primarily epistatic to Neil1. These data suggest Neil1 may be a critical mediator of BER of incorporated dUMP following TS pathway inhibition. © 2010 Landes Bioscience.

Discover hidden collaborations