Whitehouse Station, NJ, United States
Whitehouse Station, NJ, United States

Time filter

Source Type

Agency: European Commission | Branch: H2020 | Program: IA | Phase: NMP-04-2014 | Award Amount: 7.88M | Year: 2015

Bringing intelligence and communication to everyday objects is a major challenge for future electronics. This Internet of Things concept envisions wide dissemination with new performances: robustness, large area, flexibility, eco-efficient large volume manufacturing at low cost. Beyond current TOLAE demonstration, a major technology jump driving the scalability towards nanoscale resolution via high-definition cost-effective printing is required to deliver the properties and electrical performances expected by applications. ATLASS Innovation Action takes this huge step by bringing high resolution technologies to the printing industries for the demonstration of products at TRL6 in high impact markets. New multifunctional high-performing inks (semiconductor mobility >1cm2/Vs, dielectrics, ferroelectrics) and high-resolution (down to 500nm and ~100nm thickness) R2R/S2S printing including nano-imprinting and gravure printing will be engineered and scaled-up on pre-industrial pilot lines, enabling high performance devices (speed ~ 10 MHz). In-line control and novel automatic optical inspection tools and methodology will be installed to ramp-up the yield of developed processes (>99%) thus enabling cost-efficient fabrication of advanced circuits (>1000 transistors, 50kHz clock rate). The technology capability is benchmarked with conventional TOLAE process and demonstrated with 4 applications in the field of Interactive objects and Sensing surfaces (temperature tag for smart food packaging, electronic label for logistics, impact force sensing foils for automotive safety -, proximity sensing for safer human-robot collaboration ). With a consortium of 11 top companies (7 SMEs) from the cutting-edge, fast growing printed electronics sector and 4 RTOs with high-level technology expertise, ATLASS will strongly impact the global market of sensors, labels and smart objects expected to reach revenue of several EUR billion with printed sensors share of EUR 644 million by 2022.

Agency: European Commission | Branch: H2020 | Program: MSCA-ITN-ETN | Phase: MSCA-ITN-2016 | Award Amount: 3.83M | Year: 2016

Organic solar cells (OSCs) have the potential to become an environmental friendly, inexpensive, large area and flexible photovoltaics technology. Their main advantages are low process temperatures, the potential for very low cost due to abundant materials and scalable processing, and the possibility of producing flexible devices on plastic substrates. To improve their commercialization capacity, to compete with established power generation and to complement other renewable energy technologies, the performance of state-of-the-art OSCs needs to be further improved. Our goals within SEPOMO Spins in Efficient Photovoltaic devices based on Organic Molecules are to bring the performance of OSCs forward by taking advantage of the so far unexplored degree of freedom of photogenerated species in organic materials, their spin. This challenging idea provides a unified platform for the excellent research to promote the world-wide position of Europe in the field of organic photovoltaics and electronics, and to train strongly motivated early stage researchers (ESRs) for a career in science and technology oriented industry that is rapidly growing. Our scientific objectives are to develop several novel routes to enhance the efficiency of OSC by understanding and exploiting the electronic spin interactions. This will allow us to address crucial bottlenecks in state-of-the-art OSCs: we will increase the quantum efficiency by reducing the dominant recombination losses and by enhancing the light harvesting and exciton generation, e.g. by means of internal upconversion of excited states. Our ESRs will be trained within this interdisciplinary (physics, chemistry, engineering) and intersectoral (academia, R&D center, enterprise) consortium in highly relevant fundamental yet application-oriented research with the potential to commercialise the results. The hard and soft skills learned in our network are central for the ESRs to pursue their individual careers in academics or industry.

Sharp Corporation and Merck And Co. | Date: 2016-08-30

Provided are 6-5 membered fused pyridine ring compounds according to Formula (I) or pharmaceutically acceptable salts thereof, pharmaceutical compositions comprising these compounds and their use in therapy. In particular, provided is the use of 6-5 membered fused pyridine ring compounds in the treatment of Brutons Tyrosine Kinase (Btk) mediated disorders.

Lin H.V.,Merck And Co. | Accili D.,Columbia University
Cell Metabolism | Year: 2011

We review mechanisms that regulate production of glucose by the liver, focusing on areas of budding consensus, and endeavoring to provide a candid assessment of lingering controversies. We also attempt to reconcile data from tracer studies in humans and large animals with the growing compilation of mouse knockouts that display changes in glucose production. A clinical hallmark of diabetes, excessive glucose production remains key to its treatment. Hence, we attempt to integrate emerging pathways into the broader goal to rejuvenate the staid antidiabetic pharmacopeia. © 2011 Elsevier Inc.

Scapin G.,Merck And Co.
Acta Crystallographica Section D: Biological Crystallography | Year: 2013

The 'phase problem' in crystallography results from the inability to directly measure the phases of individual diffracted X-ray waves. While intensities are directly measured during data collection, phases must be obtained by other means. Several phasing methods are available (MIR, SAR, MAD, SAD and MR) and they all rely on the premise that phase information can be obtained if the positions of marker atoms in the unknown crystal structure are known. This paper is dedicated to the most popular phasing method, molecular replacement (MR), and represents a personal overview of the development, use and requirements of the methodology. The first description of noncrystallographic symmetry as a tool for structure determination was explained by Rossmann and Blow [Rossmann & Blow (1962), Acta Cryst. 15, 24-31]. The term 'molecular replacement' was introduced as the name of a book in which the early papers were collected and briefly reviewed [Rossmann (1972), The Molecular Replacement Method. New York: Gordon & Breach]. Several programs have evolved from the original concept to allow faster and more sophisticated searches, including six-dimensional searches and brute-force approaches. While careful selection of the resolution range for the search and the quality of the data will greatly influence the outcome, the correct choice of the search model is probably still the main criterion to guarantee success in solving a structure using MR. Two of the main parameters used to define the 'best' search model are sequence identity (25% or more) and structural similarity. Another parameter that may often be undervalued is the quality of the probe: there is clearly a relationship between the quality and the correctness of the chosen probe and its usefulness as a search model. Efforts should be made by all structural biologists to ensure that their deposited structures, which are potential search probes for future systems, are of the best possible quality.

Marino M.J.,Merck And Co.
Biochemical Pharmacology | Year: 2014

Descriptive, exploratory, and inferential statistics are necessary components of hypothesis-driven biomedical research. Despite the ubiquitous need for these tools, the emphasis on statistical methods in pharmacology has become dominated by inferential methods often chosen more by the availability of user-friendly software than by any understanding of the data set or the critical assumptions of the statistical tests. Such frank misuse of statistical methodology and the quest to reach the mystical α < 0.05 criteria has hampered research via the publication of incorrect analysis driven by rudimentary statistical training. Perhaps more critically, a poor understanding of statistical tools limits the conclusions that may be drawn from a study by divorcing the investigator from their own data. The net result is a decrease in quality and confidence in research findings, fueling recent controversies over the reproducibility of high profile findings and effects that appear to diminish over time. The recent development of "omics" approaches leading to the production of massive higher dimensional data sets has amplified these issues making it clear that new approaches are needed to appropriately and effectively mine this type of data. Unfortunately, statistical education in the field has not kept pace. This commentary provides a foundation for an intuitive understanding of statistics that fosters an exploratory approach and an appreciation for the assumptions of various statistical tests that hopefully will increase the correct use of statistics, the application of exploratory data analysis, and the use of statistical study design, with the goal of increasing reproducibility and confidence in the literature. © 2013 Published by Elsevier Inc.

Bell I.M.,Merck And Co.
Journal of Medicinal Chemistry | Year: 2014

Calcitonin gene-related peptide (CGRP) is a potent neuromodulator and vasodilator. It has been implicated in the pathogenesis of migraine by a number of lines of evidence, although its precise role has yet to be fully defined. Compelling evidence for the importance of CGRP in migraine has been provided by clinical trials with multiple small molecule CGRP receptor antagonists. These clinical studies have shown that blockade of the CGRP receptor can produce antimigraine efficacy comparable to that of the gold standard triptan class of drugs with an incidence of adverse events that appears to be relatively low. The present review describes the discovery and development of these new antimigraine agents and highlights the challenges of identifying orally acting drugs that target a family B G-protein-coupled receptor. © 2014 American Chemical Society.

Gaffen S.L.,Merck And Co.
Nature reviews. Immunology | Year: 2014

Following the discovery of T helper 17 (TH17) cells, the past decade has witnessed a major revision of the TH subset paradigm and substantial progress has been made in deciphering the molecular mechanisms of T cell lineage commitment and function. In this Review, we focus on the recent advances that have been made regarding the transcriptional control of TH17 cell plasticity and stability, as well as the effector functions of TH17 cells, and we highlight the mechanisms of IL-17 signalling in mesenchymal and barrier epithelial tissues. We also discuss the emerging clinical data showing that IL-17-specific and IL-23-specific antibody treatments are remarkably effective for treating many immune-mediated inflammatory diseases.

The present invention relates to 6-5 membered fused pyridine ring compounds according to Formula (I) or a pharmaceutically acceptable salt thereof or to pharmaceutical compositions comprising these compounds and to their use in therapy. In particular, the present invention relates to the use of 6-5 membered fused pyridine ring compounds according to Formula (I) in the treatment of Brutons Tyrosine Kinase (Btk) mediated disorders.

The present invention relates to 6-5 membered fused pyridine ring compounds according to Formula (I) or a pharmaceutically acceptable salt thereof or to pharmaceutical compositions comprising these compounds and to their use in therapy. In particular, the present invention relates to the use of 6-5 membered fused pyridine ring compounds according to Formula (I) in the treatment of Brutons Tyrosine Kinase (Btk) mediated disorders.

Loading Merck And Co. collaborators
Loading Merck And Co. collaborators