Memphis Zoological Society

Memphis, TN, United States

Memphis Zoological Society

Memphis, TN, United States

Time filter

Source Type

Kersey D.C.,Western University of Health Sciences | Aitken-Palmer C.,Smithsonian Conservation Biology Institute | Willis E.L.,Memphis Zoological Society | Willis E.L.,Oklahoma State University | Liang L.Y.,Chengdu Research Base of Giant Panda Breeding
Theriogenology | Year: 2016

Reproducing giant pandas (Ailuropoda melanoleuca) remains the most challenging aspect of managed care of this species. However, advancement in knowledge stemming from basic science research on the giant panda has facilitated a growth in the population. Here, we report the successful application of reproductive technologies, including noninvasive hormone monitoring, behavioral/morphometric observations, ultrasonographic evaluations, and acute phase protein assessment, in an individual female. By applying these approaches to one female, we report the practicality and usefulness of a multidisciplinary approach to reproductive care of the species. In addition, the utilization of various technologies across multiple physiological states also provided us an opportunity to record previously understudied events, such as maternal response to weaning and growth of a conceptus. © 2016 Elsevier Inc.


Williams C.L.,Mississippi State University | Willard S.,Mississippi State University | Kouba A.,Memphis Zoological Society | Sparks D.,Mississippi State University | And 4 more authors.
Journal of Animal Physiology and Animal Nutrition | Year: 2013

Giant pandas exhibit seasonal changes in bamboo plant part preference. The influences on the gastrointestinal tracts (GIT) microbial populations were evaluated during a 14-month period for a pair of adult male and female giant pandas housed at the Memphis Zoo using traditional culturing methods to enumerate eight bacterial groups (total anaerobes, total aerobes (TAR), streptococci (STR), total enterics, Escherichia coli, Bacteroides spp., lactobacilli and Clostridium spp.). Both the male and female pandas altered bamboo consumption behaviours, with a sharp decrease in leaf preference in April 2010 and returning to high levels of leaf preference from June to October, corresponding to significant shifts in the densities of TAR, STR, and lactobacilli and Bacteroides spp. These findings indicate seasonal changes in food preference affect the assemblages of microbial populations within the GIT of the giant panda and contribute to a better understanding of the importance of bamboo in this species' foraging strategy. © 2012 Blackwell Verlag GmbH.


PubMed | Smithsonian Conservation Biology Institute, Western University of Health Sciences, Memphis Zoological Society and Chengdu Research Base of Giant Panda Breeding
Type: Journal Article | Journal: Theriogenology | Year: 2016

Reproducing giant pandas (Ailuropoda melanoleuca) remains the most challenging aspect of managed care of this species. However, advancement in knowledge stemming from basic science research on the giant panda has facilitated a growth in the population. Here, we report the successful application of reproductive technologies, including noninvasive hormone monitoring, behavioral/morphometric observations, ultrasonographic evaluations, and acute phase protein assessment, in an individual female. By applying these approaches to one female, we report the practicality and usefulness of a multidisciplinary approach to reproductive care of the species. In addition, the utilization of various technologies across multiple physiological states also provided us an opportunity to record previously understudied events, such as maternal response to weaning and growth of a conceptus.


PubMed | Rhodes College and Memphis Zoological Society
Type: Comparative Study | Journal: PloS one | Year: 2015

Captive African (Loxodonta africana) and Asian (Elephas maximus) elephants can experience foot pathologies and arthritis. As a preventative measure against these pathologies and to alleviate the potential discomfort due to concrete substrates, some zoological institutions have renovated elephant housing to increase the amount of natural or shock-absorbent substrates. The objective of this study was to compare behavioral (diurnal and nocturnal) and glucorticoid (e.g., serum cortisol) responses of three female African elephants before, during, and after renovation to their indoor housing floor to assess whether renovations had short-term effects on the elephants behavior and stress physiology. Behavioral data were collected using scan-sampling methods, and activity budgets were constructed for each of the three elephants. In addition, the duration of all lying rest activities were recorded. Weekly serum cortisol concentrations were determined with enzyme immunoassay (EIA). Overall, eating was the most prevalent behavior exhibited outdoors during the day, while resting (either in a lying or standing position) were most common during the indoor, nocturnal periods. Although variation existed among the three elephants, all three females spent significantly more time walking and less time eating during the day after the completion of the renovations. The extent to which the three elephants exhibited nocturnal lying rest behavior varied among the elephants, with the oldest elephant exhibiting the least amount (an average of 13.2 2.8% of the nightly behavioral scans) compared to the two younger elephants (an average of 34.5 2.1% and 56.6 2.8% of the nightly behavioral scans). There was a significant increase in lying rest behavior for one elephant and standing rest for a second elephant following renovations. Baseline cortisol concentrations prior to renovations were 3.0 0.4 ng/ml, 4.5 0.5 ng/ml, and 4.9 0.5 ng/ml for the three elephants. Cortisol concentrations remained baseline for two of the elephants throughout and after the renovation period, while one elephant that was pregnant had elevated cortisol during construction. Cortisol concentrations for the pregnant elephant remained higher than baseline once she was introduced to the new flooring and allowed back into the building, but these values were closer to the cortisol concentrations before renovations than during construction. Our findings demonstrate that individual elephants can vary in their behavioral and physiological responses to exhibit modifications. Given that the elephants walked more during the day, two of the three elephants had an increase in rest behavior during the night, and there were minimal changes in cortisol response after the flooring renovations, we conclude that the flooring renovations overall had a positive impact on animal welfare.


Ganswindt A.,University of Pretoria | Brown J.L.,Smithsonian Conservation Biology Institute | Freeman E.W.,George Mason University | Kouba A.J.,Memphis Zoological Society | And 6 more authors.
Biology Letters | Year: 2012

Hormone analysis is a precise and widely accepted tool formonitoring reproductive function and responses to stressors. Although hormones are present and can be measured in various biological matrices, non-invasive methods have gained popularity over the past 30 years as a more practical approach for assessing ovarian, testicular and, more recently, adrenocortical activity in intractable wildlife species. Noninvasive hormone monitoring also has been key to understanding biological mechanisms related to observed behaviours of captive and free-ranging animals. Despite the increasing popularity of this research field, wildlife endocrinologists have not had a specific forum for sharing and discussing their latest findings, technical developments and common challenges. To provide such a communication platform, the International Society for Wildlife Endocrinology (ISWE) was established in 2010, followed by an international meeting held on 3-4 November 2011 at the Toronto Zoo, Canada. Over several sessions, keynote speakers and participants discussed recent developments of new and innovative methods for hormone monitoring, as well as the latest advances in basic endocrinology as applied to adrenal function, reproductive physiology, animal health, ecology and evolution. Here, we introduce ISWE to the scientific community and discuss how this new society will serve as a resource for wildlife endocrinologists worldwide. © 2011 The Royal Society.


Zhang L.,Mississippi State University | Jiang W.,Shaanxi Institute of Zoology | Wang Q.-J.,Shaanxi Institute of Zoology | Zhao H.,Shaanxi Institute of Zoology | And 5 more authors.
PLoS ONE | Year: 2016

Captive rearing and reintroduction / translocation are increasingly used as tools to supplement wild populations of threatened species. Reintroducing captive-reared Chinese giant salamanders may help to augment the declining wild populations and conserve this critically endangered amphibian. We released 31 captive-reared juvenile giant salamanders implanted with VHF radio transmitters at the Heihe River (n = 15) and the Donghe River (n = 16) in the Qinling Mountains of central China. Salamanders were monitored every day for survival from April 28th 2013 to September 3rd 2014. We attempted to recapture all living individuals by the end of the study, measured their body mass and total body length, and checked for abnormalities and presence of external parasites. Two salamanders at the Heihe River and 10 animals at the Donghe River survived through the project timeline. Nine salamanders were confirmed dead, while the status of the other 10 animals was undetermined. The annual survival rate of giant salamanders at the Donghe River (0.702) was 1.7-fold higher than that at the Heihe River (0.405). Survival increased as individuals were held longer following surgery, whereas body mass did not have a significant impact on survival rate. All salamanders recaptured from the Donghe River (n = 8) increased in mass (0.50 ± 0.13 kg) and length (5.5 ± 1.5 cm) after approximately 11 months in the wild, and they were only 7% lighter than wild animals of the same length (mean residual = -0.033 ± 0.025). Our results indicate that captive-reared Chinese giant salamanders can survive in the wild one year after release and adequate surgical recovery time is extremely important to postrelease survival. Future projects may reintroduce older juveniles to achieve better survival and longer monitoring duration. © 2016 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


PubMed | Shaanxi Institute of Zoology, Memphis Zoological Society and Mississippi State University
Type: Journal Article | Journal: PloS one | Year: 2016

Captive rearing and reintroduction / translocation are increasingly used as tools to supplement wild populations of threatened species. Reintroducing captive-reared Chinese giant salamanders may help to augment the declining wild populations and conserve this critically endangered amphibian. We released 31 captive-reared juvenile giant salamanders implanted with VHF radio transmitters at the Heihe River (n = 15) and the Donghe River (n = 16) in the Qinling Mountains of central China. Salamanders were monitored every day for survival from April 28th 2013 to September 3rd 2014. We attempted to recapture all living individuals by the end of the study, measured their body mass and total body length, and checked for abnormalities and presence of external parasites. Two salamanders at the Heihe River and 10 animals at the Donghe River survived through the project timeline. Nine salamanders were confirmed dead, while the status of the other 10 animals was undetermined. The annual survival rate of giant salamanders at the Donghe River (0.702) was 1.7-fold higher than that at the Heihe River (0.405). Survival increased as individuals were held longer following surgery, whereas body mass did not have a significant impact on survival rate. All salamanders recaptured from the Donghe River (n = 8) increased in mass (0.50 0.13 kg) and length (5.5 1.5 cm) after approximately 11 months in the wild, and they were only 7% lighter than wild animals of the same length (mean residual = -0.033 0.025). Our results indicate that captive-reared Chinese giant salamanders can survive in the wild one year after release and adequate surgical recovery time is extremely important to post-release survival. Future projects may reintroduce older juveniles to achieve better survival and longer monitoring duration.


Willis E.L.,Memphis Zoological Society | Kersey D.C.,Smithsonian Conservation Biology Institute | Kersey D.C.,Western University of Health Sciences | Durrant B.S.,Institute for Conservation Research | Kouba A.J.,Memphis Zoological Society
PLoS ONE | Year: 2011

After ovulation, non-pregnant female giant pandas experience pseudopregnancy. During pseudopregnancy, non-pregnant females exhibit physiological and behavioral changes similar to pregnancy. Monitoring hormonal patterns that are usually different in pregnant mammals are not effective at determining pregnancy status in many animals that undergo pseudopregnancy, including the giant panda. Therefore, a physiological test to distinguish between pregnancy and pseudopregnancy in pandas has eluded scientists for decades. We examined other potential markers of pregnancy and found that activity of the acute phase protein ceruloplasmin increases in urine of giant pandas in response to pregnancy. Results indicate that in term pregnancies, levels of active urinary ceruloplasmin were elevated the first week of pregnancy and remain elevated until 20-24 days prior to parturition, while no increase was observed during the luteal phase in known pseudopregnancies. Active ceruloplasmin also increased during ultrasound-confirmed lost pregnancies; however, the pattern was different compared to term pregnancies, particularly during the late luteal phase. In four out of the five additional reproductive cycles included in the current study where females were bred but no birth occurred, active ceruloplasmin in urine increased during the luteal phase. Similar to the known lost pregnancies, the temporal pattern of change in urinary ceruloplasmin during the luteal phase deviated from the term pregnancies suggesting that these cycles may have also been lost pregnancies. Among giant pandas in captivity, it has been presumed that there is a high rate of pregnancy loss and our results are the first to provide evidence supporting this notion. © 2011 Willis et al.


Wiedower E.E.,Texas A&M University | Kouba A.J.,Memphis Zoological Society | Vance C.K.,Mississippi State University | Hansen R.L.,Memphis Zoological Society | And 2 more authors.
PLoS ONE | Year: 2012

Giant panda (Ailuropoda melanoleuca) monitoring and research often require accurate estimates of population size and density. However, obtaining these estimates has been challenging. Innovative technologies, such as fecal near infrared reflectance spectroscopy (FNIRS), may be used to differentiate between sex, age class, and reproductive status as has been shown for several other species. The objective of this study was to determine if FNIRS could be similarly used for giant panda physiological discriminations. Based on samples from captive animals in four U.S. zoos, FNIRS calibrations correctly identified 78% of samples from adult males, 81% from adult females, 85% from adults, 89% from juveniles, 75% from pregnant and 70% from non-pregnant females. However, diet had an impact on the success of the calibrations. When diet was controlled for plant part such that "leaf only" feces were evaluated, FNIRS calibrations correctly identified 93% of samples from adult males and 95% from adult females. These data show that FNIRS has the potential to differentiate between the sex, age class, and reproductive status in the giant panda and may be applicable for surveying wild populations. © 2012 Wiedower et al.


PubMed | Memphis Zoological Society
Type: Journal Article | Journal: PloS one | Year: 2011

After ovulation, non-pregnant female giant pandas experience pseudopregnancy. During pseudopregnancy, non-pregnant females exhibit physiological and behavioral changes similar to pregnancy. Monitoring hormonal patterns that are usually different in pregnant mammals are not effective at determining pregnancy status in many animals that undergo pseudopregnancy, including the giant panda. Therefore, a physiological test to distinguish between pregnancy and pseudopregnancy in pandas has eluded scientists for decades. We examined other potential markers of pregnancy and found that activity of the acute phase protein ceruloplasmin increases in urine of giant pandas in response to pregnancy. Results indicate that in term pregnancies, levels of active urinary ceruloplasmin were elevated the first week of pregnancy and remain elevated until 20-24 days prior to parturition, while no increase was observed during the luteal phase in known pseudopregnancies. Active ceruloplasmin also increased during ultrasound-confirmed lost pregnancies; however, the pattern was different compared to term pregnancies, particularly during the late luteal phase. In four out of the five additional reproductive cycles included in the current study where females were bred but no birth occurred, active ceruloplasmin in urine increased during the luteal phase. Similar to the known lost pregnancies, the temporal pattern of change in urinary ceruloplasmin during the luteal phase deviated from the term pregnancies suggesting that these cycles may have also been lost pregnancies. Among giant pandas in captivity, it has been presumed that there is a high rate of pregnancy loss and our results are the first to provide evidence supporting this notion.

Loading Memphis Zoological Society collaborators
Loading Memphis Zoological Society collaborators