Time filter

Source Type

Menlo Park, CA, United States

Membrane Technology and Research, Inc. | Date: 2013-02-25

Disclosed herein is a methanol-to-propylene (MTP) conversion process that utilizes a membrane separation step to increase the recycle of C

Membrane Technology and Research, Inc. | Date: 2015-07-01

A process for treating an effluent gas stream arising from a manufacturing operation that produces an olefin or a non-polymeric olefin derivative. The process involves cooling and condensing the effluent gas stream, which comprises an olefin, a paraffin, and a third gas, to produce a liquid condensate and an uncondensed (residual) gas stream. Both streams are then passed through membrane separation steps. The membrane separation of the uncondensed gas stream results in an olefin-enriched stream and an olefin-depleted stream. The olefin-enriched stream is recirculated within the process prior to the condensation step. The membrane separation of the condensate also results in an olefin-enriched stream, which may be recycled for use within the manufacturing operation, and an olefin-depleted stream, which may be purged from the process.

Membrane Technology and Research, Inc. | Date: 2014-11-11

A membrane separation assembly that includes an integrated filter element and at least one membrane module housed within a first vessel and a second vessel containing at least one membrane module, which is stacked or aligned adjacent to the first vessel. The first vessel is configured to allow liquids to be trapped and removed from the assembly, and gases to flow to and through the membrane modules of the first vessel and the membrane modules of the second vessel, which are ultimately withdrawn from the assembly. The assembly is useful in the conditioning of fuel gas to separate methane from C

Membrane Technology and Research, Inc. | Date: 2013-12-18

Disclosed herein is a process for conditioning natural gas containing C

Membrane Technology and Research, Inc. | Date: 2014-09-04

The invention is a process involving membrane-based gas separation for separating and recovering carbon dioxide emissions from combustion processes in partially concentrated form, and then transporting the carbon dioxide and using or storing it in a confined manner without concentrating it to high purity. The process of the invention involves building up the concentration of carbon dioxide in a gas flow loop between the combustion step and a membrane separation step. A portion of the carbon dioxide-enriched gas can then be withdrawn from this loop and transported, without the need to liquefy the gas or otherwise create a high-purity stream, to a destination where it is used or confined, preferably in an environmentally benign manner.

Discover hidden collaborations