Time filter

Source Type

PubMed | Tongji University, The Innovation Group, Hubei University of Technology, Membrane Protein Disease Research Group and 2 more.
Type: Journal Article | Journal: Journal of the American Society of Nephrology : JASN | Year: 2016

Autosomal dominant polycystic kidney disease pathogenesis can be recapitulated in animal models by gene mutations in or dosage alterations of polycystic kidney disease 1 (PKD1) or PKD2, demonstrating that too much and too little PKD1/PKD2 are both pathogenic. Gene dosage manipulation has become an appealing approach by which to compensate for loss or gain of gene function, but the mechanisms controlling PKD2 expression remain incompletely characterized. In this study, using cultured mammalian cells and dual-luciferase assays, we found that the 3 untranslated region (3UTR) of PKD2 mRNA inhibits luciferase protein expression. We then identified nucleotides 691-1044, which we called 3FI, as the 3UTR fragment necessary for repressing the expression of luciferase or PKD2 in this system. Using a pull-down assay and mass spectrometry we identified far upstream element-binding protein 1 (FUBP1) as a 3FI-binding protein. In vitro overexpression of FUBP1 inhibited the expression of PKD2 protein but not mRNA. In embryonic zebrafish, FUBP1 knockdown (KD) by morpholino injection increased PKD2 expression and alleviated fish tail curling caused by morpholino-mediated KD of PKD2. Conversely, FUBP1 overexpression by mRNA injection significantly increased pronephric cyst occurrence and tail curling in zebrafish embryos. Furthermore, FUBP1 binds directly to eukaryotic translation initiation factor 4E-binding protein 1, indicating a link to the translation initiation complex. These results show that FUBP1 binds 3FI in the PKD2 3UTR to inhibit PKD2 translation, regulating zebrafish disease phenotypes associated with PKD2 KD.

Wang Q.,Membrane Protein Disease Research Group | Zheng W.,Membrane Protein Disease Research Group | Wang Z.,Membrane Protein Disease Research Group | Yang J.,Membrane Protein Disease Research Group | And 5 more authors.
PLoS ONE | Year: 2015

Polycystin-2 (PC2), encoded by the PKD2 gene, is mutated in ∼15% of autosomal dominant polycystic kidney disease. Filamins are actin-binding proteins implicated in scaffolding and membrane stabilization. Here we studied the effects of filamin on PC2 stability using filamin-deficient human melanoma M2, filamin-A (FLNA)-replete A7, HEK293 and IMCD cells together with FLNA siRNA/shRNA knockdown (KD). We found that the presence of FLNA is associated with higher total and plasma membrane PC2 protein expression. Western blotting analysis in combination with FLNA KD showed that FLNA in A7 cells represses PC2 degradation, prolonging the half-life from 2.3 to 4.4 hours. By co-immunoprecipitation and Far Western blotting we found that the FLNA C-terminus (FLNAC) reduces the FLNA-PC2 binding and PC2 expression, presumably through competing with FLNA for binding PC2. We further found that FLNA mediates PC2 binding with actin through forming complex PC2-FLNA-actin. FLNAC acted as a blocking peptide and disrupted the link of PC2 with actin through disrupting the PC2-FLNA-actin complex. Finally, we demonstrated that the physical interaction of PC2-FLNA is Ca-dependent. Taken together, our current study indicates that FLNA anchors PC2 to the actin cytoskeleton through complex PC2-FLNA-actin to reduce degradation and increase stability, and possibly regulate PC2 function in a Ca-dependent manner. © 2015 Wang et al.

Loading Membrane Protein Disease Research Group collaborators
Loading Membrane Protein Disease Research Group collaborators