Entity

Time filter

Source Type


Lebedeva L.S.,Melnikov Permafrost Institute | Semenova O.M.,Saint Petersburg State University | Vinogradova T.A.,Saint Petersburg State University | Kruchin M.N.,Training and Consulting Center Izyskatel | Volkova N.V.,State Hydrological Institute
IAHS-AISH Proceedings and Reports | Year: 2015

The probability of heavy rains and river floods is expected to increase with time in the Northern Caucasus region. Densely populated areas in the valleys of small mountainous watersheds already frequently suffer from catastrophic peak floods caused by intense rains at higher elevations. This study aimed at assessing the flood characteristics of several small basins in the piedmont area of the Caucasus Mountains adjacent to the Black Sea coast including ungauged Cemes River in the Novorossiysk city. The Deterministic-Stochastic Modelling System which consists of hydrological model Hydrograph and stochastic weather generator was applied to evaluate extreme rainfall and runoff characteristics of 1 % exceedance probability. Rainfall intensity is shown to play more significant role than its depth in formation of extreme flows within the studied region. © Author(s) 2015. Source


Semenova O.M.,Saint Petersburg State University | Lebedeva L.S.,Melnikov Permafrost Institute | Nesterova N.V.,Saint Petersburg State University | Vinogradova T.A.,Saint Petersburg State University
IAHS-AISH Proceedings and Reports | Year: 2015

Twelve mountainous basins of the Vitim Plateau (Eastern Siberia, Russia) with areas ranging from 967 to 18 200 km2 affected by extensive fires in 2003 (from 13 to 78 % of burnt area) were delineated based on MODIS Burned Area Product. The studied area is characterized by scarcity of hydrometeorological observations and complex hydrological processes. Combined analysis of monthly series of flow and precipitation was conducted to detect short-term fire impact on hydrological response of the basins. The idea of basin-analogues which have significant correlation of flow with "burnt" watersheds in stationary (pre-fire) period with the assumption that fire impact produced an outlier of established dependence was applied. Available data allowed for qualitative detection of fire-induced changes at two basins from twelve studied. Summer flow at the Amalat and Vitimkan Rivers (22 and 78 % proportion of burnt area in 2003, respectively) increased by 40-50 % following the fire. The impact of fire on flow from the other basins was not detectable. The hydrological model Hydrograph was applied to simulate runoff formation processes for stationary pre-fire and non-stationary post-fire conditions. It was assumed that landscape properties changed after the fire suggest a flow increase. These changes were used to assess the model parameters which allowed for better model performance in the post-fire period. © Author(s) 2015. Source


Paul Overduin P.,Alfred Wegener Institute for Polar and Marine Research | Wetterich S.,Alfred Wegener Institute for Polar and Marine Research | Gunther F.,Alfred Wegener Institute for Polar and Marine Research | Grigoriev M.N.,Melnikov Permafrost Institute | And 4 more authors.
Cryosphere | Year: 2016

Coastal erosion and flooding transform terrestrial landscapes into marine environments. In the Arctic, these processes inundate terrestrial permafrost with seawater and create submarine permafrost. Permafrost begins to warm under marine conditions, which can destabilize the sea floor and may release greenhouse gases. We report on the transition of terrestrial to submarine permafrost at a site where the timing of inundation can be inferred from the rate of coastline retreat. On Muostakh Island in the central Laptev Sea, East Siberia, changes in annual coastline position have been measured for decades and vary highly spatially. We hypothesize that these rates are inversely related to the inclination of the upper surface of submarine ice-bonded permafrost (IBP) based on the consequent duration of inundation with increasing distance from the shoreline. We compared rapidly eroding and stable coastal sections of Muostakh Island and find permafrost-table inclinations, determined using direct current resistivity, of 1 and 5%, respectively. Determinations of submarine IBP depth from a drilling transect in the early 1980s were compared to resistivity profiles from 2011. Based on borehole observations, the thickness of unfrozen sediment overlying the IBP increased from 0 to 14 m below sea level with increasing distance from the shoreline. The geoelectrical profiles showed thickening of the unfrozen sediment overlying ice-bonded permafrost over the 28 years since drilling took place. We use geoelectrical estimates of IBP depth to estimate permafrost degradation rates since inundation. Degradation rates decreased from over 0.4mg-1 following inundation to around 0.1g-1 at the latest after 60 to 110 years and remained constant at this level as the duration of inundation increased to 250 years. We suggest that long-term rates are lower than these values, as the depth to the IBP increases and thermal and porewater solute concentration gradients over depth decrease. For the study region, recent increases in coastal erosion rate and changes in benthic temperature and salinity regimes are expected to affect the depth to submarine permafrost, leading to coastal regions with shallower IBP. © 2016 Author(s). Source


Liljedahl A.K.,University of Alaska Fairbanks | Boike J.,Alfred Wegener Institute for Polar and Marine Research | Daanen R.P.,354 College Road | Fedorov A.N.,Melnikov Permafrost Institute | And 17 more authors.
Nature Geoscience | Year: 2016

Ice wedges are common features of the subsurface in permafrost regions. They develop by repeated frost cracking and ice vein growth over hundreds to thousands of years. Ice-wedge formation causes the archetypal polygonal patterns seen in tundra across the Arctic landscape. Here we use field and remote sensing observations to document polygon succession due to ice-wedge degradation and trough development in ten Arctic localities over sub-decadal timescales. Initial thaw drains polygon centres and forms disconnected troughs that hold isolated ponds. Continued ice-wedge melting leads to increased trough connectivity and an overall draining of the landscape. We find that melting at the tops of ice wedges over recent decades and subsequent decimetre-scale ground subsidence is a widespread Arctic phenomenon. Although permafrost temperatures have been increasing gradually, we find that ice-wedge degradation is occurring on sub-decadal timescales. Our hydrological model simulations show that advanced ice-wedge degradation can significantly alter the water balance of lowland tundra by reducing inundation and increasing runoff, in particular due to changes in snow distribution as troughs form. We predict that ice-wedge degradation and the hydrological changes associated with the resulting differential ground subsidence will expand and amplify in rapidly warming permafrost regions. © 2016 Macmillan Publishers Limited. All rights reserved. Source


Hellmann L.,Swiss Federal Institute of forest | Hellmann L.,Oeschger Center for Climate Change Research | Agafonov L.,Russian Academy of Sciences | Churakova O.,ETH Zurich | And 18 more authors.
Dendrochronologia | Year: 2016

Arctic driftwood represents a unique proxy archive at the interface of marine and terrestrial environments. Combined wood anatomical and dendrochronological analyses have been used to detect the origin of driftwood and may allow past timber floating activities, as well as past sea ice and ocean current dynamics to be reconstructed. However, the success of driftwood provenancing studies depends on the length, number, and quality of circumpolar boreal reference chronologies. Here, we introduce a Eurasian-wide high-latitude network of 286 ring width chronologies from the International Tree Ring Data Bank (ITRDB) and 160 additional sites comprising the three main boreal conifers Pinus, Larix, and Picea. We assess the correlation structure within the network to identify growth patterns in the catchment areas of large Eurasian rivers, the main driftwood deliverers. The occurrence of common growth patterns between and differing patterns within catchments indicates the importance of biogeographic zones for ring width formation and emphasizes the degree of spatial precision when provenancing. Reference chronologies covering millennial timescales are so far restricted to a few larch sites in Central and Eastern Siberia (eastern Taimyr, Yamal Peninsula and north-eastern Yakutia), as well as several pine sites in Scandinavia, where large rivers are missing though. The general good spatial coverage of tree-ring sites across northern Eurasia indicates the need for updating and extending existing chronologies rather than developing new sites. © 2016 Elsevier GmbH. Source

Discover hidden collaborations