Melkassa Agricultural Research Center

Nazrēt, Ethiopia

Melkassa Agricultural Research Center

Nazrēt, Ethiopia
SEARCH FILTERS
Time filter
Source Type

Hadgu G.,Haramaya University | Tesfaye K.,International Maize and Wheat Improvement Center | Mamo G.,Ethiopian Institute of Agricultural Research | Mamo G.,Melkassa Agricultural Research Center
Theoretical and Applied Climatology | Year: 2015

The impact of climatic change can be on specific locations. However, the broader the affected area coverage, in mind, the higher would be the chance in missing critical details. In this light, this paper attempts to assess the possible climatic changes and their corresponding implications on agricultural production in northern Ethiopia. The analysis is based on the future (2030 and 2050) temperature and rainfall data, downscaled as ensemble of four general circulation models (GCMs) using the A2 and B1 emission scenarios for ten meteorological stations located in different agroecological zones of the study region. The result indicates that, based on emission scenarios, the mean maximum and minimum temperature would increase by 2–2.3 and 0.8–0.9 °C in 2030 and by 2.2–2.7 and 1.4–1.7 °C in 2050, respectively. This will be accompanied by an increase in the frequency of hot days and nights and a decrease in cool days and nights. While annual rainfall totals will remain unchanged, main rainy season (kiremt) rainfall total would increase on average in 12.9 and 14.2 % under A2 and 9.5 and 11.2 % under B1 by 2030 and 2050, respectively. Owing to an increase in kiremt rainfall, the yield of maize and sorghum may increase at some sites under future climatic conditions, and the increase would be higher under CO2 fertilization. The results suggest the need for site-specific adaptation strategies to reduce the impact and/or exploit the opportunities of climate change. © 2014, Springer-Verlag Wien.


Adugna A.,Melkassa Agricultural Research Center | Adugna A.,Addis Ababa Institute of Technology | Bekele E.,Addis Ababa Institute of Technology
Plant Genetic Resources: Characterisation and Utilisation | Year: 2016

A study was carried out between 2008 and 2011 to investigate the potential risks of gene flow and its consequences in the crop–wild–weed S. bicolor complex in Ethiopia to aid efforts to conserve genetic diversity. Morphological measurements and genomic DNA samples were taken in situ from 30 wild and eight cultivated populations representing a total of 760 samples from five regions. Genetic diversity, gene flow, population structure and outcrossing rates of wild populations were computed using phenotypic measurements and/or polymorphic simple sequence repeat (SSR) markers. Moreover, morphological analyses of fitness of crop–wild hybrids were studied. High diversity was observed among the wild/weedy sorghum populations for phenotypic traits and SSRs. SSR diversity was high in both wild and cultivated populations, but the magnitude was greater in the former. Gene flow between the wild and the cultivated sorghum was observed to be higher than that within either pool. Wild sorghums exhibited variation in the multilocus outcrossing rate (range = 0.31–0.65) and fitness was not compromised in most wild × crop hybrids. The study indicated that crop-to-wild gene flow is possible in Ethiopia. Thus, genes from transgenic sorghum are expected to enter into the wild and non-transgenic cultivated populations and may spread and persist, if transgenic sorghum is deployed in Ethiopia and in other countries of Africa, which may pose risk of introduction of unwanted effects, which in turn may lead to loss of genetic diversity. Copyright © NIAB 2016


Adugna A.,Melkassa Agricultural Research Center | Adugna A.,Addis Ababa Institute of Technology | Bekele E.,Addis Ababa Institute of Technology
Plant Genetic Resources: Characterisation and Utilisation | Year: 2015

Since the immediate wild relatives of Sorghum bicolor (L.) Moench are indigenous to Ethiopia, studying their population biology is timely for undertaking conservation measures. A study was conducted to investigate the occurrence of population bottlenecks and to estimate the long-term effective population size (N e) in wild relatives of sorghum. For this, 40 samples of wild sorghum were collected from two remotely located populations that were allopatric to the cultivated sorghum. The presence of bottlenecks was investigated using heterozygosity excess/deficiency, mode shift and allelic diversity based on nine polymorphic simple sequence repeat (SSR) loci. We also estimated the N e of the studied populations using two different methods employing SSR mutation models. The expected heterozygosity was found to be 0.41 and 0.71 and allelic richness was 3.0 and 4.9, in Awash and Gibe populations, respectively. Neither the heterozygosity excess nor the mode-shift methods detected signatures of bottlenecks in the studied populations. The effective size of the two wild sorghum populations studied also showed no risk of population reduction in these regions of Ethiopia. Therefore, these allopatric wild sorghum populations can survive by occupying patches by the roadsides and fences, areas within abandoned farm lands, forests, etc., which shows that their wild characteristics of adaptation have been adequate for them to survive from extinction despite extensive deforestation of their habitat for modern agriculture and frequent grazing by livestock. However, this does not guarantee the survival of these species for the future and ex situ conservation measures or policies could help maintain their diversity. © 2015 NIAB.


Adugna A.,Addis Ababa Institute of Technology | Adugna A.,Melkassa Agricultural Research Center | Sweeney P.M.,Ohio State University | Bekele E.,Addis Ababa Institute of Technology
Journal of Genetics | Year: 2013

Because transgenic sorghum (Sorghum bicolor L.) is being developed for Africa, we investigated the potential for transgenes to spread to conspecific wild/weedy sorghum populations in Ethiopia, which is considered the centre of origin of cultivated sorghum. In the current study, the extent of outcrossing, and uniparental and biparental inbreeding were investigated in seven wild/weedy sorghum populations collected at elevations ranging from 631 to 1709 m. Based on allele frequency data of 1120 progenies and 140 maternal plants from five polymorphic microsatellite markers, outcrossing rates were estimated using standard procedures. The average multilocus outcrossing rate was 0.51, with a range of 0.31-0.65 among populations, and the family outcrossing rate was in the extreme range of 0 to 100%. The highest outcrossing (t m = 0.65) was recorded in a weedy population that was intermixed with an improved crop variety in Abuare (Wello region). It was also observed that the inbreeding coefficient of the progenies (F p) tend to be more than the inbreeding coefficient of both their maternal parents (F m) and the level of inbreeding expected at equilibrium (F eq), which is a characteristic of predominantly outbreeding species. Biparental inbreeding was evident in all populations and averaged 0.24 (range = 0.10-0.33). The high outcrossing rates of wild/weedy sorghum populations in Ethiopia indicate a high potential for crop genes (including transgenes) to spread within the wild pool. Therefore, effective risk management strategies may be needed if the introgression of transgenes or other crop genes from improved cultivars into wild or weedy populations is deemed to be undesirable. © 2013 Indian Academy of Sciences.


Wegary D.,Melkassa Agricultural Research Center | Wegary D.,University of the Free State | Labuschagne M.T.,University of the Free State | Vivek B.S.,Indian International Crops Research Institute for the Semi Arid Tropics
Field Crops Research | Year: 2011

Quality protein maize (QPM) breeding involves the combined use of the opaque-2 (o2) gene and the genetic modifiers of the o2 locus to develop cultivars with modified kernel endosperm, and increased concentrations of lysine and tryptophan. This study was designed to assess grain yield performance, endosperm modification, and protein quality and quantity under two contrasting soil nitrogen environments. A 15-parent diallel cross was evaluated under one low nitrogen stress and one optimal nitrogen environment each at Harare (Zimbabwe) and Bako (Ethiopia). Most QPM hybrids showed higher protein quality levels than the best non-QPM check under both conditions. Protein concentration tended to vary across nitrogen levels, but not endosperm type. Significant differences were found for the test of main effect (nitrogen-level) for endosperm modification and tryptophan concentration. This indicated that QPM maintains quality even under low soil nitrogen, a widespread condition in Africa. General combining ability (GCA) mean squares were highly significant for most protein quality traits for each environment and across environments whereas specific combining ability (SCA) mean squares were not significant in most cases. This indicated that additive gene effects were primarily responsible for variation of most traits evaluated and hence progeny performance can adequately be predicted on the basis of parental performance. Inbred lines P2, P4 and P12 had desirable GCA effects for endosperm modification while P1 and P3 had the best GCA for tryptophan concentration in grain. The current study suggests that hybrids with desirable endosperm modification, protein quality and stable performance under low nitrogen stress and optimal conditions can be produced with careful selection. © 2011 Elsevier B.V.


Adugna A.,Addis Ababa Institute of Technology | Adugna A.,Melkassa Agricultural Research Center | Bekele E.,Addis Ababa Institute of Technology
Plant Genetic Resources: Characterisation and Utilisation | Year: 2013

Extensive studies of genetic diversity and population structure important for conservation of wild sorghum are yet lacking in Ethiopia, the centre of origin for cultivated sorghum. To assess both genetic diversity and the probability of gene flow between wild and cultivated types, collections of wild Sorghum bicolor were made from regions in Ethiopia where wild and cultivated sorghum coexist. Morphological data were recorded in situ for both quantitative and qualitative characters from 30 populations in five diverse geographical regions and eight agroecologies. High phenotypic diversity was observed among the wild and weedy sorghum populations. The overall standardized Shannon-Weaver diversity index (H′), computed from the frequencies of all qualitative traits, ranged from 0.47 to 0.98 with an average value of 0.76. Moreover, warm semi-arid lowland (SA2) agroecologies, which contain Tigray populations, supported the highest diversity for these traits. Subspecies verticilliflorum and drummondii (the two major subspecies of wild S. bicolor) were observed in diverse habitats throughout northern and central Ethiopia. In some areas, weedy types showed domestication traits including the absence of awns and reduced seed shattering. The existence of morphologically intermediate forms indicates that gene flow between cultivated and wild forms has likely occurred. Deployment of transgenic crop sorghum, therefore, would pose a distinct risk for transgene movement into wild Ethiopian populations. Copyright © NIAB 2012.


Adugna A.,Addis Ababa Institute of Technology | Adugna A.,Melkassa Agricultural Research Center | Bekele E.,Addis Ababa Institute of Technology
Plant Genetic Resources: Characterisation and Utilisation | Year: 2013

Natural hybridization between wild/weedy and crop species often results in rare hybrids, which can be more weedy and difficult to control. Moreover, the advent of transgenic crop plants raises questions of biosafety risk assessment on the consequences of rare hybrids with possible fitness enhancing genes on the environment. This study aimed at measuring the fitness components of wild-crop sorghum hybrids for various juvenile survival and adult morphological and fertility characters as part of the risk assessment of transgenic sorghum in Africa where the crop was believed to have first domesticated and serves as the major staple. Out of a pool of hybrids made in 2010 from 23 wild sorghum accessions and two released cultivated sorghum varieties using hand emasculation techniques, seven were selected for the field study of their fitness components in 2011. The study confirmed that crop-wild hybrids of sorghum are fertile. Two approaches were followed (relative fitness and mid-parent heterosis) which showed that most of the hybrids were as fit as their wild parents, and in some cases they showed mid-parent heterosis for the measured traits. The results of this study highlighted a potential risk that hybrids carrying crop genes (including herbicide resistance transgenes) could pose because they could be more weedy than their wild/weedy parents if transgenic sorghum is deployed in regions where the wild and cultivated sorghum populations coexist, such as in Ethiopia and in other parts of Africa. © NIAB 2013.


Assefa T.,Melkassa Agricultural Research Center | Beebe S.E.,Centro Internacional Of Agricultura Tropical Ciat | Rao I.M.,Centro Internacional Of Agricultura Tropical Ciat | Cuasquer J.B.,Centro Internacional Of Agricultura Tropical Ciat | And 4 more authors.
Field Crops Research | Year: 2013

Common bean (Phaseolus vulgaris L.) is an important food legume grown in Africa and Latin America, where water deficits frequently reduce grain yield. The objectives of this study were to identify advanced lines of common bean with superior seed yield under drought, and to identify plant traits that could serve as selection criteria for evaluating drought resistance. Seventy-eight advanced inbred lines (genotypes) were generated by single seed descent and evaluated with the two parents (ICA Bunsi, a white pea bean variety and SXB 405, a breeding line) and a standard check (Awash melka) under drought and irrigated field conditions in 2008 and 2009 at Melkassa, Ethiopia. Seed yield, seed number per m2, pod number per m2 and 100 seed weight were reduced by 65%, 34%, 29% and 12%, respectively under drought stress compared to irrigated conditions. Two genotypes (G87, G80) had better drought yield compared with a standard check, and several also responded to irrigation. Pod harvest index (PHI; [dry weight of seed/dry weight of pod at harvest]×100) was reduced in sensitive genotypes and increased in resistant genotypes under drought stress conditions indicating the importance of remobilization of photosynthates from pod wall to seed. Principal component analysis indicated that the first component including five traits (grain yield, seed number per m2, pod number per m2, 100 seed weight and PHI) explained 35.7% of the total variation under drought stress. Correlations of PHI with yield (0.43***) and fair heritability (0.48) in drought suggest that PHI would be an effective selection criterion for identifying genotypes with improved drought resistance. Correlated gain in drought yield from selection for PHI would be greater than direct yield selection, due to much better heritability of PHI, and would also contribute to irrigated yield. © 2013 Elsevier B.V.


Adugna A.,Addis Ababa Institute of Technology | Adugna A.,Melkassa Agricultural Research Center | Snow A.A.,Ohio State University | Sweeney P.M.,Ohio State University | And 2 more authors.
Genetic Resources and Crop Evolution | Year: 2013

In situ population studies of wild relatives of crops are crucial for the conservation of plant genetic resources, especially in regions with high genetic diversity and a risk of local extinction. Ethiopia is the center of origin for sorghum, yet little is known about the genetic structure of extant wild populations. Using 9 Simple Sequence Repeat loci, we characterized 19 wild populations from five regions, 8 local cultivar populations from three regions, and 10 wild sorghum accessions from several African countries. To our knowledge, this is the most comprehensive study to date of in situ wild sorghum populations in Africa. Genetic diversity corrected for sample size was significantly greater in the wild populations in situ than in local cultivars or the accessions. Approximately 41 % of the genetic variation in the wild plants was partitioned among populations, indicating a high degree of differentiation and potential value for germplasm conservation, and the average number of migrants (Nm) per generation was 0. 43. Cluster analyses showed that some wild populations were grouped by geographic region, whereas others were not, presumably due to long-distance seed movement. Four wild populations from disjunct regions formed a unique cluster with an Ethiopian accession of subsp. drummondii and probably represent a weedy race. STRUCTURE and other analyses detected evidence for crop-wild hybridization, consistent with previous molecular marker studies in Kenya, Mali, and Cameroon. In summary, in situ wild sorghum populations in Ethiopia harbor substantial genetic diversity and differentiation, despite their close proximity to conspecific cultivars in this crop/wild/weedy complex. © 2012 Springer Science+Business Media Dordrecht.


PubMed | Rice Research Institute of Iran, Shahid Chamran University, Melkassa Agricultural Research Center, Atatürk University and Guilan University
Type: Comparative Study | Journal: Biochemical genetics | Year: 2016

Analysis of the genetic diversity and population structure of crops is very important for use in breeding programs and for genetic resources conservation. We analyzed the genetic diversity and population structure of 47 rice genotypes from diverse origins using amplified fragment length polymorphism (AFLP) markers and morphological characters. The 47 genotypes, which were composed of four populations: Iranian native varieties, Iranian improved varieties, International Rice Research Institute (IRRI) rice varieties, and world rice collections, were analyzed using ten primer combinations. A total of 221 scorable bands were produced with an average of 22.1 alleles per pair of primers, of which 120 (54.30%) were polymorphic. The polymorphism information content (PIC) values varied from 0.32 to 0.41 with an average of 0.35. The high percentage of polymorphic bands (%PB) was found to be 64.71 and the resolving power (R p) collections were 63.36. UPGMA clustering based on numerical data from AFLP patterns clustered all 47 genotypes into three large groups. The genetic similarity between individuals ranged from 0.54 to 0.94 with an average of 0.74. Population genetic tree showed that Iranian native cultivars formed far distant cluster from the other populations, which may indicate that these varieties had minimal genetic change over time. Analysis of molecular variance (AMOVA) revealed that the largest proportion of the variation (84%) to be within populations showing the inbreeding nature of rice. Therefore, Iranian native varieties (landraces) may have unique genes, which can be used for future breeding programs and there is a need to conserve this unique diversity. Furthermore, crossing of Iranian genotypes with the genetically distant genotypes in the other three populations may result in useful combinations, which can be used as varieties and/or lines for future rice breeding programs.

Loading Melkassa Agricultural Research Center collaborators
Loading Melkassa Agricultural Research Center collaborators