Nagoya, Japan
Nagoya, Japan

Meijo University is a private university in Japan. Its main campus is in Tempaku-ku, Nagoya, Aichi and it has a satellite campus in Kani, Gifu. Wikipedia.

SEARCH FILTERS
Time filter
Source Type

Patent
Meijo University | Date: 2014-03-04

Fabricating a high-quality nitride semiconductor crystal at a lower temperature. A nitride semiconductor crystal is fabricated by supplying onto a substrate (105) a group III element and/or a compound thereof, a nitrogen element and/or a compound thereof and an Sb element and/or a compound thereof, all of which serve as materials, and thereby vapor-growing at least one layer of nitride semiconductor film (104). A supply ratio of the Sb element to the nitrogen element in a growth process of the at least one layer of the nitride semiconductor film (104) is set to not less than 0.004.


Patent
Meijo University | Date: 2015-05-13

Providing a stent which can easily be indwelled in a blood vessel in a state such that a catheter can be projected toward an inside of aneurysm. The stent is a stent for use in medical treatment of an aneurysm (1) and includes a cylindrical stent body (10) provided on a peripheral wall and having a plurality of insertion portions (11) through each of which a catheter (7) is insertable and a plurality of valving elements (20) provided in the insertion portions (11) respectively. Each valving element (20) is opened when the catheter (7) is inserted through one of the insertion portions (11). Each valving element (20) is closed when the catheter (7) is pulled out of the insertion portion (11). This suppresses an outflow into a blood vessel of a coil (9) placed in the aneurysm (1).


Patent
Meijo University and STANLEY Electrical CO. | Date: 2015-12-01

A nitride semiconductor light-emitting device with periodic gain active layers includes an n-type semiconductor layer, a p-type semiconductor layer and a resonator. The device further includes a plurality of active layers disposed between the n-type and p-type semiconductor layers so as to correspond to a peak intensity position of light existing in the resonator and at least one interlayer disposed between the active layers. The active layer disposed at the p-type semiconductor layer side has a larger light emission intensity than the active layer disposed at the n-type semiconductor layer side.


This application provides a method of manufacturing an n-p-n nitride-semiconductor light-emitting device which includes a current confinement region(A) using a buried tunnel junction layer and in which a favorable luminous efficacy can be obtained and to provide the n-p-n nitride-semiconductor light-emitting device. The p-type activation of a p-type GaN crystal layer stacked below a tunnel junction layer is performed in an intermediate phase of a manufacturing process in which the p-type GaN crystal layer is exposed to atmosphere gas with the tunnel junction layer partially removed, before the tunnel junction layer is buried in an n-type GaN crystal layer . In the intermediate phase of the manufacturing process in which the p-type GaN crystal layer is exposed, p-type activation is efficiently performed on the p-type GaN crystal layer , and a p-type GaN crystal layer with low electric resistance can be obtained.


Achieving resistance reduction of a nitride semiconductor multilayer film reflector. In the nitride semiconductor multilayer film reflector, a first semiconductor layer (104) has a higher Al composition than a second semiconductor layer (106). A first composition-graded layer (105) is interposed between the first and second semiconductor layers (104, 106) so as to be located at a group III element face side of the first semiconductor layer (104), the first composition-graded layer (105) being adjusted so that its Al composition becomes lower as coming close to the second semiconductor layer (106). A second composition-graded layer (103) is interposed between the first and second semiconductor layers (104, 106) so as to be located at a nitride face side of the first semiconductor layer (104). The second composition-graded layer (103) is adjusted so that its Al composition becomes lower as coming close to the second semiconductor layer (106). Energy levels of electrons at bottoms of conduction bands of the first and second semiconductor layers (104, 106) and the first and second composition-graded layers (105, 103) are continuous without band offset. The first composition-graded layer (105) has an n-type impurity concentration of not less than 510^(19 )cm^(3).


Patent
Denso Corporation and Meijo University | Date: 2014-10-20

A recess, which has a bottom, is formed in at least one of a contact surface of a rotor and a contact surface of an armature. A solid material, which is made of thermoset resin that contains powder of metal oxide or metal dispersed in the thermoset resin, is formed in an inside of the recess.


Patent
Meijo University | Date: 2014-06-16

An object is to improve a positive hole injection efficiency into an active layer in a nitride semiconductor light-emitting device. The nitride semiconductor light-emitting device is formed by stacking nitride semiconductor crystals each of which contains Al and has a polar or semipolar surface either serving as a growth face. The device includes an active layer (103), and first and second composition-graded layers (102, 104). The active layer (103) is interposed between the first and second composition-graded layers (102, 104). Each one of the first and second composition-graded layers is composition-graded so that an Al composition value is rendered smaller as each one of the first and second composition-graded layers (102, 104) comes close to a side where a sum of spontaneous polarization and piezoelectric polarization is negative.


[Problem] To provide: a method for utilizing a novel marker, including a method for determining depression; and a kit for analyzing an ubiquitinated serotonin transporter. [Solution] A method for determining depression, comprising a step of analyzing the proportion of an ubiquitinated serotonin transporter in a blood sample collected from a subject; and a kit for analyzing an ubiquitinated serotonin transporter in blood, which comprises an ubiquitinated protein collector material and an anti-serotonin transporter antibody and is used for the analysis of the proportion of an ubiquitinated serotonin transporter in a collected blood sample.


A nitride semiconductor light emitting device includes a substrate as a base and an n-type semiconductor layer grown on a surface side of the substrate. In the device, antimony (Sb) is added to the n-type semiconductor layer so that a molar fraction is not less than 0.1%. The n-type semiconductor layer has an electron concentration of not less than 110^(18 )cm^(3).


Patent
Meijo University | Date: 2014-03-04

Fabricating a high-quality nitride semiconductor crystal at a lower temperature. A nitride semiconductor crystal is fabricated by supplying onto a substrate (105) a group III element and/or a compound thereof, a nitrogen element and/or a compound thereof and an Sb element and/or a compound thereof, all of which serve as materials, and thereby vapor-growing at least one layer of nitride semiconductor film (104). A supply ratio of the Sb element to the nitrogen element in a growth process of the at least one layer of the nitride semiconductor film (104) is set to not less than 0.004.

Loading Meijo University collaborators
Loading Meijo University collaborators