Time filter

Source Type

Metropolitan Government of Nashville-Davidson (balance), TN, United States

Meharry Medical College, located in Nashville, Tennessee, United States, is a graduate and professional institution affiliated with the United Methodist Church whose mission is to educate healthcare professionals and scientists. Founded in 1876 as the Medical Department of Central Tennessee College, it was the first medical school in the South for African Americans, though not the first medical school for African-Americans in the nation; the Howard University College of Medicine was chartered in 1868, for example.Meharry Medical College was chartered separately in 1915. It is currently the largest private historically black institution in the United States solely dedicated to educating healthcare professionals and scientists.Meharry Medical College includes a medical school, dental school, graduate school, and an allied health school. The degrees that Meharry offers include Doctor of Medicine , Doctor of Dental Surgery , Master of Science in Public Health , Master of Science , and Doctor of Philosophy degrees. Meharry is the second largest educator of African-American medical doctors and dentists in the United States. Also, it is the largest producer of African Americans with Masters in Public Health and Ph.D.s in biomedical science.Journal of Health Care for the Poor and Underserved is a public health journal owned by and edited at Meharry Medical College. Wikipedia.

Halder S.K.,Center for Womens Health Research | Goodwin J.S.,Meharry Medical College | Al-Hendy A.,Center for Womens Health Research
Journal of Clinical Endocrinology and Metabolism | Year: 2011

Background: Uterine leiomyomas (fibroids) are the most common benign estrogen-dependent tumors of premenopausal women. TGF-β3 up-regulates the synthesis of many of extracellular matrix proteins that are associated with tissue fibrosis. Objective: To examine the effect of 1,25-dihydroxyvitamin D3 (vitamin D3) on TGF-β3-induced fibrosis-related protein expression in immortalized human uterine leiomyoma (HuLM) cells. Methods: HuLM cells were treated with TGF-β3 with or without vitamin D 3. Western blot analyses were employed to test the effect of vitamin D3 on TGF-β3-induced protein expression of collagen type 1, fibronectin, and plasminogen activator inhibitor-1 proteins. Western blots as well as immunofluorescence analyses were used to verify the effect of vitamin D3 on TGF-β3-induced Smad activation involved in extracellular matrix protein synthesis and deposition, which ultimately lead to tissue fibrosis. Results: We observed that TGF-β3 induced fibronectin and collagen type 1 protein expression in HuLM cells, and that effect was suppressed by vitamin D3. TGF-β3 also induced protein expression of plasminogen activator inhibitor-1, an important TGF-β target, in HuLM cells, which was also inhibited by vitaminD3. Additionally, TGF-β3 induced phosphorylation of Smad2 as well as nuclear translocation of Smad2 and Smad3 in HuLM cells, whereas vitamin D significantly reduced all these TGF-β3-mediated effects. Therefore, our results suggest that vitamin D3 has consistently reduced TGF-β3 effects that are involved in the process of fibrosis in human leiomyoma cells. Conclusion: Vitamin D 3 is an antifibrotic factor that might be potentially useful as a novel therapeutic for nonsurgical treatment of benign uterine fibroids. Copyright © 2011 by The Endocrine Society. Source

Whitty J.E.,Meharry Medical College
Clinical Obstetrics and Gynecology | Year: 2010

Women with cystic fibrosis (CF) are living to childbearing age and many have successful pregnancies. Preconception care with optimization of pulmonary function, eradication of pulmonary infection, improved nutritional status, and diabetes care improve fertility and pregnancy outcome. Women with CF, poor pulmonary function and nutrition, and less than ideal body weight are more likely to suffer adverse outcomes. Women with CF and pulmonary hypertension risk mortality. Individuals with CF and end stage lung disease have improved survival after lung transplant. Women with lung transplants can have successful pregnancy, but the risk of organ rejection and death are high. © 2010, Lippincott Williams & Wilkins. Source

Sheng L.,Meharry Medical College
Toxicological sciences : an official journal of the Society of Toxicology | Year: 2010

Gene by environment interactions (G × E) are thought to underlie neurodevelopmental disorder, etiology, neurodegenerative disorders, including the multiple forms of autism spectrum disorder. However, there is limited biological information, indicating an interaction between specific genes and environmental components. The present study focuses on a major component of airborne pollutants, polycyclic aromatic hydrocarbons (PAHs), such as benzo(a)pyrene [B(a)P], which negatively impacts cognitive development in children who have been exposed in utero. In our study, prenatal exposure of Cpr(lox/lox) timed-pregnant dams to B(a)P (0, 150, 300, and 600 μg/kg body weight via oral gavage) on embryonic day (E14-E17) consistent with our susceptibility-exposure paradigm was combined with the analysis of a replicated autism risk gene, the receptor tyrosine kinase, Met. The results demonstrate a dose-dependent increase in B(a)P metabolite generation in B(a)P-exposed Cpr(lox/lox) offspring. Additionally, a sustained persistence of hydroxy metabolites during the onset of synapse formation was noted, corresponding to the peak of Met expression. Prenatal B(a)P exposure also downregulated Met RNA and protein levels and dysregulated normal temporal patterns of expression during synaptogenesis. Consistent with these data, transcriptional cell-based assays demonstrated that B(a)P exposure directly reduces human MET promoter activity. Furthermore, a functional readout of in utero B(a)P exposure showed a robust reduction in novel object discrimination in B(a)P-exposed Cpr(lox/lox) offspring. These results confirm the notion that common pollutants, such as the PAH B(a)P, can have a direct negative impact on the regulated developmental expression of an autism risk gene with associated negative behavioral learning and memory outcomes. Source

Nowicki B.,Meharry Medical College
Advances in experimental medicine and biology | Year: 2013

In this chapter, we present a concise historic prospective and a summary of accumulated knowledge on steroid hormones, DAF expression, and therapeutic implication of steroid hormone treatment on multiple pathologies, including infection and the host-pathogen interactions. DAF/CD55 plays multiple physiologic functions including tissue protection from the cytotoxic complement injury, an anti-inflammatory function due to its anti-adherence properties which enhance transmigration of monocytes and macrophages and reduce tissue injury. DAF physiologic functions are essential in many organ systems including pregnancy for protection of the semiallogeneic fetus or for preventing uncontrolled infiltration by white cells in their pro- and/or anti-inflammatory functions. DAF expression appears to have multiple regulatory tissue-specific and/or menstrual cycle-specific mechanisms, which involve complex signaling mechanisms. Regulation of DAF expression may involve a direct or an indirect effect of at least the estrogen, progesterone, and corticosteroid regulatory pathways. DAF is exploited in multiple pathologic conditions by pathogens and viruses in chronic tissue infection processes. The binding of Escherichia coli bearing Dr adhesins to the DAF/CD55 receptor is DAF density dependent and triggers internalization of E. coli via an endocytic pathway involving CD55, lipid rafts, and microtubules. Dr+ E. coli or Dr antigen may persist in vivo in the interstitium for several months. Further understanding of such processes should be instrumental in designing therapeutic strategies for multiple conditions involving DAF's protective or pathologic functions and tailoring host expression of DAF. Source

Membranous nephropathy (MN), a major cause of nephrotic syndrome, is a non-inflammatory immune kidney disease mediated by IgG antibodies that form glomerular subepithelial immune complexes. In primary MN, autoantibodies target proteins expressed on the podocyte surface, often phospholipase A2 receptor (PLA2R1). Pathology is driven by complement activation, leading to podocyte injury and proteinuria. This article overviews the mechanisms of complement activation and regulation in MN, addressing the paradox that anti-PLA2R1 and other antibodies causing primary MN are predominantly (but not exclusively) IgG4, an IgG subclass that does not fix complement. Besides immune complexes, alterations of the glomerular basement membrane (GBM) in MN may lead to impaired regulation of the alternative pathway (AP). The AP amplifies complement activation on surfaces insufficiently protected by complement regulatory proteins. Whereas podocytes are protected by cell-bound regulators, the GBM must recruit plasma factor H, which inhibits the AP on host surfaces carrying certain polyanions, such as heparan sulfate (HS) chains. Because HS chains present in the normal GBM are lost in MN, we posit that the local complement regulation by factor H may be impaired as a result. Thus, the loss of GBM HS in MN creates a micro-environment that promotes local amplification of complement activation, which in turn may be initiated via the classical or lectin pathways by subsets of IgG in immune complexes. A detailed understanding of the mechanisms of complement activation and dysregulation in MN is important for designing more effective therapies. © 2016 Borza. Source

Discover hidden collaborations