Mediterranean Institute of Neurobiology INMED

Sainte-Foy-lès-Lyon, France

Mediterranean Institute of Neurobiology INMED

Sainte-Foy-lès-Lyon, France

Time filter

Source Type

Deal C.L.,University of Montréal | Tony M.,University of Montréal | Hoybye C.,Karolinska University Hospital | Allen D.B.,University of Wisconsin - Madison | And 34 more authors.
Journal of Clinical Endocrinology and Metabolism | Year: 2013

Context: Recombinant human GH (rhGH) therapy in Prader-Willi syndrome (PWS) has been used by the medical community and advocated by parental support groups since its approval in the United States in 2000 and in Europe in 2001. Its use in PWS represents a unique therapeutic challenge that includes treating individuals with cognitive disability, varied therapeutic goals that are not focused exclusively on increased height, and concerns about potential life-threatening adverse events. Objective: The aim of the study was to formulate recommendations for the use of rhGH in children and adult patients with PWS. Evidence: We performed a systematic review of the clinical evidence in the pediatric population, including randomized controlled trials, comparative observational studies, and long-term studies (>3.5 y). Adult studies included randomized controlled trials of rhGH treatment for ≥6 months and uncontrolled trials. Safety data were obtained from case reports, clinical trials, and pharmaceutical registries. Methodology: Forty-three international experts and stakeholders followed clinical practice guideline development recommendations outlined by the AGREE Collaboration (www.agreetrust.org). Evidence was synthesized and graded using a comprehensive multicriteria methodology (EVIDEM) (http://bit.ly.PWGHIN). Conclusions: Following a multidisciplinary evaluation, preferably by experts, rhGH treatment should be considered for patients with genetically confirmed PWS in conjunction with dietary, environmental, and lifestyle interventions. Cognitive impairment should not be a barrier to treatment, and informed consent/assent should include benefit/risk information. Exclusion criteria should include severe obesity, uncontrolled diabetes mellitus, untreated severe obstructive sleep apnea, active cancer, or psychosis. Clinical outcome priorities should vary depending upon age and the presence of physical, mental, and social disability, and treatment should be continued for as long as demonstrated benefits outweigh the risks. Copyright © 2013 by The Endocrine Society.


Ishida S.,French Institute of Health and Medical Research | Ishida S.,University Pierre and Marie Curie | Picard F.,University of Geneva | Rudolf G.,University of Strasbourg | And 22 more authors.
Nature Genetics | Year: 2013

The main familial focal epilepsies are autosomal dominant nocturnal frontal lobe epilepsy, familial temporal lobe epilepsy and familial focal epilepsy with variable foci. A frameshift mutation in the DEPDC5 gene (encoding DEP domain-containing protein 5) was identified in a family with focal epilepsy with variable foci by linkage analysis and exome sequencing. Subsequent pyrosequencing of DEPDC5 in a cohort of 15 additional families with focal epilepsies identified 4 nonsense mutations and 1 missense mutation. Our findings provided evidence of frequent (37%) loss-of-function mutations in DEPDC5 associated with a broad spectrum of focal epilepsies. The implication of a DEP (Dishevelled, Egl-10 and Pleckstrin) domain-containing protein that may be involved in membrane trafficking and/or G protein signaling opens new avenues for research. © 2013 Nature America, Inc. All rights reserved.


Lesca G.,University of Lyon | Lesca G.,French Institute of Health and Medical Research | Rudolf G.,University of Strasbourg | Bruneau N.,University of Strasbourg | And 45 more authors.
Nature Genetics | Year: 2013

Epileptic encephalopathies are severe brain disorders with the epileptic component contributing to the worsening of cognitive and behavioral manifestations. Acquired epileptic aphasia (Landau-Kleffner syndrome, LKS) and continuous spike and waves during slow-wave sleep syndrome (CSWSS) represent rare and closely related childhood focal epileptic encephalopathies of unknown etiology. They show electroclinical overlap with rolandic epilepsy (the most frequent childhood focal epilepsy) and can be viewed as different clinical expressions of a single pathological entity situated at the crossroads of epileptic, speech, language, cognitive and behavioral disorders. Here we demonstrate that about 20% of cases of LKS, CSWSS and electroclinically atypical rolandic epilepsy often associated with speech impairment can have a genetic origin sustained by de novo or inherited mutations in the GRIN2A gene (encoding the N-methyl-D-aspartate (NMDA) glutamate receptor α2 subunit, GluN2A). The identification of GRIN2A as a major gene for these epileptic encephalopathies provides crucial insights into the underlying pathophysiology. © 2013 Nature America, Inc. All rights reserved.


Dimassi S.,University of Lyon | Dimassi S.,French Institute of Health and Medical Research | Labalme A.,University of Lyon | Lesca G.,University of Lyon | And 36 more authors.
Epilepsia | Year: 2014

Objectives Rolandic epilepsies (REs) represent the most frequent epilepsy in childhood. Patients may experience cognitive, speech, language, reading, and behavioral issues. The genetic origin of REs has long been debated. The participation of rare copy number variations (CNVs) in the pathophysiology of various human epilepsies has been increasingly recognized. However, no systematic search for microdeletions or microduplications has been reported in RE so far. Methods Array comparative genomic hybridization (aCGH) and quantitative polymerase chain reaction (qPCR) were used to analyze the genomic status of a series of 47 unrelated RE patients who displayed various types of electroclinical manifestations. Results Thirty rare CNVs were detected in 21 RE patients. Two CNVs were de novo, 12 were inherited, and 16 were of unknown inheritance. Each CNV was unique to one given patient, except for a 16p11.2 duplication found in two patients. The CNVs of highest interest comprised or disrupted strong candidate or confirmed genes for epileptic and other neurodevelopmental disorders, including BRWD3, GRIN2A, KCNC3, PRKCE, PRRT2, SHANK1, and TSPAN7. Significance Patients with REs showed rare microdeletions and microduplications with high frequency and heterogeneity. Whereas only a subset of all genomic alterations found here may actually participate in the phenotype, the novel de novo events as well as several inherited CNVs contain or disrupt genes, some of which are likely to influence the emergence, the presentation, or the comorbidity of RE. The future screening of cohorts of larger size will help in detecting more de novo or recurrent events and in appreciating the possible enrichment of specific CNVs in patients with RE. © Wiley Periodicals, Inc. © 2013 International League Against Epilepsy.


Lesca G.,Lyon Hospices Civils | Lesca G.,University of Lyon | Lesca G.,French Institute of Health and Medical Research | Rudolf G.,University of Strasbourg | And 24 more authors.
Epilepsia | Year: 2012

Purpose: The continuous spike and waves during slow-wave sleep syndrome (CSWSS) and the Landau-Kleffner (LKS) syndrome are two rare epileptic encephalopathies sharing common clinical features including seizures and regression. Both CSWSS and LKS can be associated with the electroencephalography pattern of electrical status epilepticus during slow-wave sleep and are part of a clinical continuum that at its benign end also includes rolandic epilepsy (RE) with centrotemporal spikes. The CSWSS and LKS patients can also have behavioral manifestations that overlap the spectrum of autism disorders (ASD). An impairment of brain development and/or maturation with complex interplay between genetic predisposition and nongenetic factors has been suspected. A role for autoimmunity has been proposed but the pathophysiology of CSWSS and of LKS remains uncharacterized. Methods: In recent years, the participation of rare genomic alterations in the susceptibility to epileptic and autistic disorders has been demonstrated. The involvement of copy number variations (CNVs) in 61 CSWSS and LKS patients was questioned using comparative genomic hybridization assays coupled with validation by quantitative polymerase chain reaction (PCR). Key Findings: Whereas the patients showed highly heterogeneous in genomic architecture, several potentially pathogenic alterations were detected. A large number of these corresponded to genomic regions or genes (ATP13A4, CDH9, CDH13, CNTNAP2, CTNNA3, DIAPH3, GRIN2A, MDGA2, SHANK3) that have been either associated with ASD for most of them, or involved in speech or language impairment, or in RE. Particularly, CNVs encoding cell adhesion proteins (cadherins, protocadherins, contactins, catenins) were detected with high frequency (≈20% of the patients) and significant enrichment (cell adhesion: p = 0.027; cell adhesion molecule binding: p = 9.27 × 10-7). Significance: Overall our data bring the first insights into the possible molecular pathophysiology of CSWSS and LKS. The overrepresentation of cell adhesion genes and the strong overlap with the genetic, genomic and molecular ASD networks, provide an exciting and unifying view on the clinical links among CSWSS, LKS, and ASD. © Wiley Periodicals, Inc. © 2012 International League Against Epilepsy.


Salmi M.,French Institute of Health and Medical Research | Salmi M.,Mediterranean Institute of Neurobiology INMED | Salmi M.,Aix - Marseille University | Bruneau N.,French Institute of Health and Medical Research | And 64 more authors.
Brain | Year: 2013

Altered development of the human cerebral cortex can cause severe malformations with often intractable focal epileptic seizures and may participate in common pathologies, notably epilepsy. This raises important conceptual and therapeutic issues. Two missense mutations in the sushi repeat-containing protein SRPX2 had been previously identified in epileptic disorders with or without structural developmental alteration of the speech cortex. In the present study, we aimed to decipher the precise developmental role of SRPX2, to have a better knowledge on the consequences of its mutations, and to start addressing therapeutic issues through the design of an appropriate animal model. Using an in utero Srpx2 silencing approach, we show that SRPX2 influences neuronal migration in the developing rat cerebral cortex. Wild-type, but not the mutant human SRPX2 proteins, rescued the neuronal migration phenotype caused by Srpx2 silencing in utero, and increased alpha-tubulin acetylation. Following in utero Srpx2 silencing, spontaneous epileptiform activity was recorded post-natally. The neuronal migration defects and the post-natal epileptic consequences were prevented early in embryos by maternal administration of tubulin deacetylase inhibitor tubacin. Hence epileptiform manifestations of developmental origin could be prevented in utero, using a transient and drug-based therapeutic protocol. © The Author (2013).


Carvill G.L.,University of Washington | Regan B.M.,University of Melbourne | Yendle S.C.,University of Melbourne | O'Roak B.J.,University of Washington | And 28 more authors.
Nature Genetics | Year: 2013

Epilepsy-aphasia syndromes (EAS) are a group of rare, severe epileptic encephalopathies of unknown etiology with a characteristic electroencephalogram (EEG) pattern and developmental regression particularly affecting language. Rare pathogenic deletions that include GRIN2A have been implicated in neurodevelopmental disorders. We sought to delineate the pathogenic role of GRIN2A in 519 probands with epileptic encephalopathies with diverse epilepsy syndromes. We identified four probands with GRIN2A variants that segregated with the disorder in their families. Notably, all four families presented with EAS, accounting for 9% of epilepsy-aphasia cases. We did not detect pathogenic variants in GRIN2A in other epileptic encephalopathies (n = 475) nor in probands with benign childhood epilepsy with centrotemporal spikes (n = 81). We report the first monogenic cause, to our knowledge, for EAS. GRIN2A mutations are restricted to this group of cases, which has important ramifications for diagnostic testing and treatment and provides new insights into the pathogenesis of this debilitating group of conditions. © 2013 Nature America, Inc. All rights reserved.


Huguet G.,Institute Pasteur Paris | Huguet G.,University Paris Diderot | Nava C.,French Institute of Health and Medical Research | Nava C.,French National Center for Scientific Research | And 23 more authors.
PLoS ONE | Year: 2014

Inherited and de novo genomic imbalances at chromosome 16p11.2 are associated with autism spectrum disorders (ASD), but the causative genes remain unknown. Among the genes located in this region, PRRT2 codes for a member of the synaptic SNARE complex that allows the release of synaptic vesicles. PRRT2 is a candidate gene for ASD since homozygote mutations are associated with intellectual disability and heterozygote mutations cause benign infantile seizures, paroxysmal dyskinesia, or hemiplegic migraine. Here, we explored the contribution of PRRT2 mutations in ASD by screening its coding part in a large sample of 1578 individuals including 431 individuals with ASD, 186 controls and 961 individuals from the human genome Diversity Panel. We detected 24 nonsynonymous variants, 1 frameshift (A217PfsX8) and 1 in-frame deletion of 6 bp (p.A361-P362del). The frameshift mutation was observed in a control with no history of neurological or psychiatric disorders. The p.A361-P362del was observed in two individuals with autism from sub-Saharan African origin. Overall, the frequency of PRRT2 deleterious variants was not different between individuals with ASD and controls. Remarkably, PRRT2 displays a highly significant excess of nonsynonymous (pN) vs synonymous (pS) mutations in Asia (pN/pS = 4.85) and Europe (pN/pS = 1.62) compared with Africa (pN/pS = 0.26; Asia vs Africa: P = 0.000087; Europe vs Africa P = 0.00035; Europe vs Asia P = P = 0.084). We also showed that whole genome amplification performed through rolling cycle amplification could artificially introduce the A217PfsX8 mutation indicating that this technology should not be performed prior to PRRT2 mutation screening. In summary, our results do not support a role for PRRT2 coding sequence variants in ASD, but provide an ascertainment of its genetic variability in worldwide populations that should help researchers and clinicians to better investigate the role of PRRT2 in human diseases. © 2014 Huguet et al.

Loading Mediterranean Institute of Neurobiology INMED collaborators
Loading Mediterranean Institute of Neurobiology INMED collaborators