Time filter

Source Type

Licciardi M.,University of Palermo | Paolino D.,University of Catanzaro | Mauro N.,University of Palermo | Cosco D.,University of Catanzaro | And 6 more authors.
ChemMedChem | Year: 2016

The biopharmaceutical properties of supramolecular vesicular aggregates (SVAs) were characterized with regard to their physicochemical features and compared with cationic liposomes (CLs). Neutral and cationic SVAs were synthesized using two different copolymers of poly(aspartyl hydrazide) by thin-layer evaporation and extrusion techniques. Both copolymers were self-assembled in pre-formulated liposomes and formed neutral and cationic SVAs. Gemcitabine hydrochloride (GEM) was used as an anticancer drug and loaded by a pH gradient remote loading procedure, which significantly increased drug loading inside the SVAs. The resulting average size of the SVAs was 100 nm. The anticancer activity of GEM-loaded neutral and cationic SVAs was tested in human alveolar basal epithelial (A549) and colorectal cancer (CaCo-2) cells. GEM-loaded cationic SVAs increased the anticancer activity in A549 and CaCo-2 cells relative to free drug, neutral SVAs, and CLs. In vivo biodistribution in Wistar rats showed that cationic SVAs accumulate at higher concentrations in lung tissue than neutral SVAs and CLs. Cationic SVAs may therefore serve as an innovative future therapy for pulmonary carcinoma. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Mauro N.,University of Palermo | Scialabba C.,University of Palermo | Cavallaro G.,University of Palermo | Licciardi M.,University of Palermo | And 3 more authors.
Biomacromolecules | Year: 2015

Among the relevant properties of graphene derivatives, their ability of acting as an energy-converting device so as to produce heat (i.e., thermoablation and hyperthermia) was more recently taken into account for the treatment of solid tumors. In this pioneering study, for the first time, the in vitro RGO-induced hyperthermia was assessed and combined with the stimuli-sensitive anticancer effect of a biotinylated inulin-doxorubicin conjugate (CJ-PEGBT), hence, getting to a nanosystem endowed with synergic anticancer effects and high specificity. CJ-PEGBT was synthesized by linking pentynoic acid and citraconic acid to inulin. The citraconylamide pendants, used as pH reversible spacer, were exploited to further conjugate doxorubicin, whereas the alkyne moiety was orthogonally functionalized with an azido PEG-biotin derivative by copper(II) catalyzed 1,3-dipolar cycloaddition. DSC measures, AFM, and UV spectrophotometry were employed to systematically investigate adsorption of CJ-PEGBT onto RGO and its physicochemical stability in aqueous media, demonstrating that a stable π-staked nanosystem can be obtained. In vitro tests using cancer breast cells (MCF-7) showed the ability of the RGO/CJ-PEGBT of efficiently killing cancer cells both via a selective laser beam thermoablation and hyperthermia-triggered chemotherapy. If compared with the nonbiotinylated nanosystem, including virgin RGO and the free conjugate, RGO/CJ-PEGBT is endowed with a smart combination of properties which warrant potential as an anticancer nanomedicine. © 2015 American Chemical Society.

Mauro N.,University of Palermo | Fiorica C.,University of Palermo | Varvara P.,University of Palermo | Di Prima G.,University of Palermo | And 2 more authors.
European Polymer Journal | Year: 2016

Here, for the first time, branched polyaminoacids bearing α-amino acids as side functions, namely PAA-co-AA and PGA-co-AA, are prepared by heterophase ring opening of polysuccinimide (PSI) with l-arginine or glycine in aqueous environment and at controlled pH. The modulation of the pH of the reaction leads to high-molecular-weight copolymers with tunable functionalization and, as consequence, with tailor-made physicochemical properties. Furthermore, a branched polyaminoacid carrying a preformed bioactive peptide (l-trileucine) and l-arginine as side pendants, named PATA-co-AA, was synthesized via a similar pathway thus leading to complex biomimetic materials potentially exploitable in several biomedical fields. Acid-base titrations, circular dichroism studies and spectrofluorimetric analysis show that the physicochemical behavior of this class of bioinspired copolymers can be predicted considering the starting features of the selected building blocks, implying that a careful choice of functional amino acids or peptides provides good chance for obtaining macromolecule libraries with selected properties. © 2016 Elsevier Ltd.

Loading Mediterranean Center for Human Advanced Biotechnologies Med Chab collaborators
Loading Mediterranean Center for Human Advanced Biotechnologies Med Chab collaborators