Time filter

Source Type

Warsaw, Poland

The Medical University of Warsaw was founded in January 1950, building on the University of Warsaw's former Faculty of Medicine, which had been established in the early nineteenth century. The Medical University of Warsaw is the largest medical school in Poland, and one of the most prestigious. Wikipedia.

Ratajczak M.Z.,University of Louisville | Ratajczak M.Z.,Medical University of Warsaw
Leukemia | Year: 2015

This review presents a novel view and working hypothesis about the hierarchy within the adult bone marrow stem cell compartment and the still-intriguing question of whether adult bone marrow contains primitive stem cells from early embryonic development, such as cells derived from the epiblast, migrating primordial germ cells or yolk sac-derived hemangioblasts. It also presents a novel view of the mechanisms that govern stem cell mobilization and homing, with special emphasis on the role of the complement cascade as a trigger for egress of hematopoietic stem cells from bone marrow into blood as well as the emerging role of novel homing factors and priming mechanisms that support stromal-derived factor 1-mediated homing of hematopoietic stem/progenitor cells after transplantation. © 2015 Macmillan Publishers Limited. Source

Kaleta B.,Medical University of Warsaw
Archivum Immunologiae et Therapiae Experimentalis | Year: 2014

Systemic lupus erythematosus (SLE) is a multisystemic disease, caused by a variety of factors, which lead to immunological abnormalities. Osteopontin (OPN) is a pleiotropic protein, important in bone remodeling and immune system signaling. OPN, produced by various cells, including immune cells, plays a key role in regulating T-helper 1/T-helper 2 balance, stimulating B lymphocytes to produce antibodies, regulating macrophages, neutrophils and inducing dendritic cells. OPN expression is influenced by genetic polymorphisms of its promoter, hormones and cytokines. Over expression of OPN has been associated with the pathogenesis of immune-mediated diseases. OPN has been implicated in the development of murine model of lupus and in humans with SLE. In this review, I will present current state of research on the role of OPN and OPN gene polymorphisms in pathogenesis and clinical course of SLE. A better understanding of the role of OPN in SLE will contribute to more precise diagnosis and treatment of the disease. © 2014, The Author(s). Source

Szablewski L.,Medical University of Warsaw
Biochimica et Biophysica Acta - Reviews on Cancer | Year: 2013

It has been known for 80. years that cancer cell growth in an energy-related process supported by an increased glucose metabolism. This phenomenon suggests a need for a corresponding increased uptake of glucose across the plasma membrane through an enhancement in the glucose transporter proteins, SGLT proteins as well as GLUT proteins. The results of many studies have demonstrated that the expression of glucose transporters, especially GLUT1, is increased in a variety of malignancies. GLUT1 overexpression has been found to be associated with tumor progression. It was found that GLUT1 overexpression is associated with poor overall survival in various malignant tumors. © 2012 Elsevier B.V. Source

Szablewski L.,Medical University of Warsaw
International Immunopharmacology | Year: 2014

The immune system is the body's natural defense system against invading pathogens. It protects the body from infection and works to communicate an individual's well-being through a complex network of interconnected cells and cytokines. This system is an associated host defense. An uncontrolled immune system has the potential to trigger negative complications in the host. Type 1 diabetes results from the destruction of pancreatic β-cells by a β-cell-specific autoimmune process. Examples of β-cell autoantigens are insulin, glutamic acid decarboxylase, tyrosine phosphatase, and insulinoma antigen. There are many autoimmune diseases, but type 1 diabetes mellitus is one of the well-characterized autoimmune diseases. The mechanisms involved in the β-cell destruction are still not clear; it is generally believed that β-cell autoantigens, macrophages, dendritic cells, B lymphocytes, and T lymphocytes are involved in the β-cell-specific autoimmune process. It is necessary to determine what exact factors are causing the immune system to become unregulated in such a manner as to promote an autoimmune response. © 2014 Elsevier B.V. Source

Centronuclear myopathies constitute a group of heterogeneous congenital myopathies characterized by the presence of abnormal, centrally located nuclei within muscle fibers. Centronuclear myopathies can be caused by mutations of several different genes, including DNM2, encoding dynamin 2 (DNM2) a large GTPase involved in membrane trafficking and endocytosis. We report a 52-year-old female with slowly progressive muscle weakness, and a family history of the disease. Clinical, morphological, biochemical and genetic analyses of the proband and her family members were performed, including analyses of the proband's muscle biopsy. A novel D614N mutation, located in the C-terminal region pleckstrin-homology (PH) domain of DNM2 was identified in the proband and four family members, who exhibited similar symptoms. The mutation was associated with profound changes in the localization of DNM2 in muscle fibers without significant changes in protein expression. Mutated DNM2 and proteins involved in the membrane trafficking or membrane compartments maintenance were dislocalized within the myofiber, and concentrated at centrally located nuclei. This novel causative mutation (D614N) within the DNM2 gene in a large Polish centronuclear myopathy family with a late age of overt clinical manifestation caused profound changes in DNM2 localization and impaired proper organization of myofibers, and skeletal muscle functioning. Copyright © 2012 Elsevier B.V. All rights reserved. Source

Discover hidden collaborations