Time filter

Source Type

Cambridge, United States

Amunts A.,Tel Aviv University | Amunts A.,Medical Research Council MRC | Toporik H.,Tel Aviv University | Borovikova A.,Tel Aviv University | Nelson N.,Tel Aviv University
Journal of Biological Chemistry

Photosystem I functions as a sunlight energy converter, catalyzing one of the initial steps in driving oxygenic photosynthesis in cyanobacteria, algae, and higher plants. Functionally, Photosystem I captures sunlight and transfers the excitation energy through an intricate and precisely organized antenna system, consisting of a pigment network, to the center of the molecule, where it is used in the transmembrane electron transfer reaction. Our current understanding of the sophisticated mechanisms underlying these processes has profited greatly from elucidation of the crystal structures of the Photosystem I complex. In this report, we describe the developments that ultimately led to enhanced structural information of plant Photosystem I. In addition, we report an improved crystallographic model at 3.3-Å resolution, which allows analysis of the structure in more detail. An improved electron density map yielded identification and tracing of subunit PsaK. The location of an additional ten β-carotenes as well as five chlorophylls and several loop regions, which were previously uninterpretable, are now modeled. This represents the most complete plant Photosystem I structure obtained thus far, revealing the locations of and interactions among 17 protein subunits and 193 non-covalently bound photochemical cofactors. Using the new crystal structure, we examine the network of contacts among the protein subunits from the structural perspective, which provide the basis for elucidating the functional organization of the complex. © 2010 by The American Society for Biochemistry and Molecular Biology, Inc. Source

Hegde R.S.,Medical Research Council MRC | Keenan R.J.,University of Chicago
Nature Reviews Molecular Cell Biology

Membrane proteins are inserted into the endoplasmic reticulum (ER) by two highly conserved parallel pathways. The well-studied co-translational pathway uses signal recognition particle (SRP) and its receptor for targeting and the SEC61 translocon for membrane integration. A recently discovered post-translational pathway uses an entirely different set of factors involving transmembrane domain (TMD)-selective cytosolic chaperones and an accompanying receptor at the ER. Elucidation of the structural and mechanistic basis of this post-translational membrane protein insertion pathway highlights general principles shared between the two pathways and key distinctions unique to each. © 2011 Macmillan Publishers Limited. All rights reserved. Source

Baker R.W.,Princeton University | Jeffrey P.D.,Princeton University | Phillips B.P.,Princeton University | Phillips B.P.,Medical Research Council MRC | Hughson F.M.,Princeton University

Fusion of intracellular transport vesicles requires soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) and Sec1/Munc18-family (SM) proteins. Membrane-bridging SNARE complexes are critical for fusion, but their spontaneous assembly is inefficient and may require SM proteins in vivo. We report x-ray structures of Vps33, the SM subunit of the yeast homotypic fusion and vacuole protein-sorting (HOPS) complex, bound to two individual SNAREs. The two SNAREs, one from each membrane, are held in the correct orientation and register for subsequent complex assembly. Vps33 and potentially other SM proteins could thus act as templates for generating partially zipped SNARE assembly intermediates. HOPS was essential to mediate SNARE complex assembly at physiological SNARE concentrations. Thus, Vps33 appears to catalyze SNARE complex assembly through specific SNARE motif recognition. Source

Shtyrov Y.,Medical Research Council MRC

Humans are unique in developing large lexicons as their communication tool; to achieve this, they are able to learn new words rapidly. However, neural bases of this rapid learning, which may be an expression of a more general cognitive mechanism likely rooted in plasticity at cellular and synaptic levels, are not yet understood. In this update, the author highlights a selection of recent studies that attempted to trace word learning in the human brain noninvasively. A number of brain areas, most notably in hippocampus and neocortex, appear to take part in word acquisition. Critically, the currently available data not only demonstrate the hippocampal role in rapid encoding followed by slow-rate consolidation of cortical word memory traces but also suggest immediate neocortical involvement in the word memory trace formation. Echoing early behavioral studies in ultra-rapid word learning, the reviewed neuroimaging experiments can be taken to suggest that our brain may effectively form new cortical circuits online, as it gets exposed to novel linguistic patterns in the sensory input. © The Author(s) 2012. Source

Kulathu Y.,Medical Research Council MRC | Komander D.,Medical Research Council MRC
Nature Reviews Molecular Cell Biology

Ubiquitylation is one of the most abundant and versatile post-translational modifications (PTMs) in cells. Its versatility arises from the ability of ubiquitin to form eight structurally and functionally distinct polymers, in which ubiquitin moieties are linked via one of seven Lys residues or the amino terminus. Whereas the roles of Lys48-and Lys63-linked polyubiquitin in protein degradation and cellular signalling are well characterized, the functions of the remaining six 'atypical' ubiquitin chain types (linked via Lys6, Lys11, Lys27, Lys29, Lys33 and Met1) are less well defined. Recent developments provide insights into the mechanisms of ubiquitin chain assembly, recognition and hydrolysis and allow detailed analysis of the functions of atypical ubiquitin chains. The importance of Lys11 linkages and Met1 linkages in cell cycle regulation and nuclear factor-κB activation, respectively, highlight that the different ubiquitin chain types should be considered as functionally independent PTMs. © 2012 Macmillan Publishers Limited. All rights reserved. Source

Discover hidden collaborations