Medical Research Council Mary Lyon Center

Oxon, United Kingdom

Medical Research Council Mary Lyon Center

Oxon, United Kingdom
SEARCH FILTERS
Time filter
Source Type

Mochida K.,RIKEN | Hasegawa A.,RIKEN | Li M.-W.,University of California at Davis | Fray M.D.,Medical Research Council Mary Lyon Center | And 8 more authors.
PLoS ONE | Year: 2013

Procedures for cryopreserving embryos vary considerably, each having its specific advantages and disadvantages in terms of technical feasibility, embryo survival yield, temperature permissibility and species- or strain-dependent applicability. Here we report a high osmolality vitrification (HOV) method that is advantageous in these respects. Cryopreservation by vitrification is generally very simple, but, unlike slow freezing, embryos should be kept at a supercooling temperature (below -130°C) to avoid cryodamage. We overcame this problem by using an HOV solution containing 42.5% (v/v) ethylene glycol, 17.3% (w/v) Ficoll and 1.0 M sucrose. This solution is more viscous than other cryopreservation solutions, but easy handling of embryos was assured by employing a less viscous equilibration solution before vitrification. Most (>80%) embryos cryopreserved in this solution survived at -80°C for at least 30 days. Normal mice were recovered even after intercontinental transportation in a conventional dry-ice package for 2-3 days, indicating that special containers such as dry shippers with liquid nitrogen vapor are unnecessary. The HOV solution could also be employed for long-term storage in liquid nitrogen, as with other conventional cryoprotectants. Finally, we confirmed that this new vitrification method could be applied successfully to embryos of all six strains of mice we have tested so far. Thus, our HOV method provides an efficient and reliable strategy for the routine cryopreservation of mouse embryos in animal facilities and biomedical laboratories, and for easy and cheap transportation. © 2013 Mochida et al.


Williamson C.M.,Medical Research Council Mammalian Genetics Unit | Ball S.T.,Medical Research Council Mammalian Genetics Unit | Dawson C.,Babraham Institute | Mehta S.,Medical Research Council Mammalian Genetics Unit | And 8 more authors.
PLoS Genetics | Year: 2011

There is increasing evidence that non-coding macroRNAs are major elements for silencing imprinted genes, but their mechanism of action is poorly understood. Within the imprinted Gnas cluster on mouse chromosome 2, Nespas is a paternally expressed macroRNA that arises from an imprinting control region and runs antisense to Nesp, a paternally repressed protein coding transcript. Here we report a knock-in mouse allele that behaves as a Nespas hypomorph. The hypomorph mediates down-regulation of Nesp in cis through chromatin modification at the Nesp promoter but in the absence of somatic DNA methylation. Notably there is reduced demethylation of H3K4me3, sufficient for down-regulation of Nesp, but insufficient for DNA methylation; in addition, there is depletion of the H3K36me3 mark permissive for DNA methylation. We propose an order of events for the regulation of a somatic imprint on the wild-type allele whereby Nespas modulates demethylation of H3K4me3 resulting in repression of Nesp followed by DNA methylation. This study demonstrates that a non-coding antisense transcript or its transcription is associated with silencing an overlapping protein-coding gene by a mechanism independent of DNA methylation. These results have broad implications for understanding the hierarchy of events in epigenetic silencing by macroRNAs. © 2011 Williamson et al.


Ball S.T.,Medical Research Council Mammalian Genetics Unit | Kelly M.L.,Medical Research Council Mammalian Genetics Unit | Robson J.E.,Medical Research Council Mammalian Genetics Unit | Turner M.D.,Medical Research Council Mammalian Genetics Unit | And 9 more authors.
PLoS ONE | Year: 2013

Genomic imprinting results in parent-of-origin-dependent monoallelic gene expression. Early work showed that distal mouse chromosome 2 is imprinted, as maternal and paternal duplications of the region (with corresponding paternal and maternal deficiencies) give rise to different anomalous phenotypes with early postnatal lethalities. Newborns with maternal duplication (MatDp(dist2)) are long, thin and hypoactive whereas those with paternal duplication (PatDp(dist2)) are chunky, oedematous, and hyperactive. Here we focus on PatDp(dist2). Loss of expression of the maternally expressed Gnas transcript at the Gnas cluster has been thought to account for the PatDp(dist2) phenotype. But PatDp(dist2) also have two expressed doses of the paternally expressed Gnasxl transcript. Through the use of targeted mutations, we have generated PatDp(dist2) mice predicted to have 1 or 2 expressed doses of Gnasxl, and 0, 1 or 2 expressed doses of Gnas. We confirm that oedema is due to lack of expression of imprinted Gnas alone. We show that it is the combination of a double dose of Gnasxl, with no dose of imprinted Gnas, that gives rise to the characteristic hyperactive, chunky, oedematous, lethal PatDp(dist2) phenotype, which is also hypoglycaemic. However PatDp(dist2) mice in which the dosage of the Gnasxl and Gnas is balanced (either 2:2 or 1:1) are neither dysmorphic nor hyperactive, have normal glucose levels, and are fully viable. But PatDp(dist2) with biallelic expression of both Gnasxl and Gnas show a marked postnatal growth retardation. Our results show that most of the PatDp(dist2) phenotype is due to overexpression of Gnasxl combined with loss of expression of Gnas, and suggest that Gnasxl and Gnas may act antagonistically in a number of tissues and to cause a wide range of phenotypic effects. It can be concluded that monoallelic expression of both Gnasxl and Gnas is a requirement for normal postnatal growth and development. © 2013 Ball et al.

Loading Medical Research Council Mary Lyon Center collaborators
Loading Medical Research Council Mary Lyon Center collaborators