Medical Research Council Mammalian Genetics Unit

Oxfordshire, United Kingdom

Medical Research Council Mammalian Genetics Unit

Oxfordshire, United Kingdom
SEARCH FILTERS
Time filter
Source Type

Williamson C.M.,Medical Research Council Mammalian Genetics Unit | Ball S.T.,Medical Research Council Mammalian Genetics Unit | Dawson C.,Babraham Institute | Mehta S.,Medical Research Council Mammalian Genetics Unit | And 8 more authors.
PLoS Genetics | Year: 2011

There is increasing evidence that non-coding macroRNAs are major elements for silencing imprinted genes, but their mechanism of action is poorly understood. Within the imprinted Gnas cluster on mouse chromosome 2, Nespas is a paternally expressed macroRNA that arises from an imprinting control region and runs antisense to Nesp, a paternally repressed protein coding transcript. Here we report a knock-in mouse allele that behaves as a Nespas hypomorph. The hypomorph mediates down-regulation of Nesp in cis through chromatin modification at the Nesp promoter but in the absence of somatic DNA methylation. Notably there is reduced demethylation of H3K4me3, sufficient for down-regulation of Nesp, but insufficient for DNA methylation; in addition, there is depletion of the H3K36me3 mark permissive for DNA methylation. We propose an order of events for the regulation of a somatic imprint on the wild-type allele whereby Nespas modulates demethylation of H3K4me3 resulting in repression of Nesp followed by DNA methylation. This study demonstrates that a non-coding antisense transcript or its transcription is associated with silencing an overlapping protein-coding gene by a mechanism independent of DNA methylation. These results have broad implications for understanding the hierarchy of events in epigenetic silencing by macroRNAs. © 2011 Williamson et al.


Lassi G.,Italian Institute of Technology | Ball S.T.,Medical Research Council Mammalian Genetics Unit | Maggi S.,Italian Institute of Technology | Colonna G.,Italian Institute of Technology | And 5 more authors.
PLoS Genetics | Year: 2012

It has been suggested that imprinted genes are important in the regulation of sleep. However, the fundamental question of whether genomic imprinting has a role in sleep has remained elusive up to now. In this work we show that REM and NREM sleep states are differentially modulated by the maternally expressed imprinted gene Gnas. In particular, in mice with loss of imprinting of Gnas, NREM and complex cognitive processes are enhanced while REM and REM-linked behaviors are inhibited. This is the first demonstration that a specific overexpression of an imprinted gene affects sleep states and related complex behavioral traits. Furthermore, in parallel to the Gnas overexpression, we have observed an overexpression of Ucp1 in interscapular brown adipose tissue (BAT) and a significant increase in thermoregulation that may account for the REM/NREM sleep phenotypes. We conclude that there must be significant evolutionary advantages in the monoallelic expression of Gnas for REM sleep and for the consolidation of REM-dependent memories. Conversely, biallelic expression of Gnas reinforces slow wave activity in NREM sleep, and this results in a reduction of uncertainty in temporal decision-making processes. © 2012 Lassi et al.


Peters J.,Medical Research Council Mammalian Genetics Unit
Nature Reviews Genetics | Year: 2014

Genomic imprinting is an epigenetic phenomenon that results in monoallelic gene expression according to parental origin. It has long been established that imprinted genes have major effects on development and placental biology before birth. More recently, it has become evident that imprinted genes also have important roles after birth. In this Review, I bring together studies of the effects of imprinted genes from the prenatal period onwards. Recent work on postnatal stages shows that imprinted genes influence an extraordinarily wide-ranging array of biological processes, the effects of which extend into adulthood, and play important parts in common diseases that range from obesity to psychiatric disorders. © 2014 Macmillan Publishers Limited. All rights reserved.


Joyce P.I.,University of Bristol | Satija R.,Medical Research Council Mammalian Genetics Unit | Satija R.,Massachusetts Institute of Technology | Chen M.,University of Bristol | Kuwabara P.E.,University of Bristol
PLoS Genetics | Year: 2012

The calpains are physiologically important Ca 2+-activated regulatory proteases, which are divided into typical or atypical sub-families based on constituent domains. Both sub-families are present in mammals, but our understanding of calpain function is based primarily on typical sub-family members. Here, we take advantage of the model organism Caenorhabditis elegans, which expresses only atypical calpains, to extend our knowledge of the phylogenetic evolution and function of calpains. We provide evidence that a typical human calpain protein with a penta EF hand, detected using custom profile hidden Markov models, is conserved in ancient metazoans and a divergent clade. These analyses also provide evidence for the lineage-specific loss of typical calpain genes in C. elegans and Ciona, and they reveal that many calpain-like genes lack an intact catalytic triad. Given the association between the dysregulation of typical calpains and human degenerative pathologies, we explored the phenotypes, expression profiles, and consequences of inappropriate reduction or activation of C. elegans atypical calpains. These studies show that the atypical calpain gene, clp-1, contributes to muscle degeneration and reveal that clp-1 activity is sensitive to genetic manipulation of [Ca 2+] i. We show that CLP-1 localizes to sarcomeric sub-structures, but is excluded from dense bodies (Z-disks). We find that the muscle degeneration observed in a C. elegans model of dystrophin-based muscular dystrophy can be suppressed by clp-1 inactivation and that nemadipine-A inhibition of the EGL-19 calcium channel reveals that Ca 2+ dysfunction underlies the C. elegans MyoD model of myopathy. Taken together, our analyses highlight the roles of calcium dysregulation and CLP-1 in muscle myopathies and suggest that the atypical calpains could retain conserved roles in myofilament turnover. © 2012 Joyce et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


Ball S.T.,Medical Research Council Mammalian Genetics Unit | Kelly M.L.,Medical Research Council Mammalian Genetics Unit | Robson J.E.,Medical Research Council Mammalian Genetics Unit | Turner M.D.,Medical Research Council Mammalian Genetics Unit | And 9 more authors.
PLoS ONE | Year: 2013

Genomic imprinting results in parent-of-origin-dependent monoallelic gene expression. Early work showed that distal mouse chromosome 2 is imprinted, as maternal and paternal duplications of the region (with corresponding paternal and maternal deficiencies) give rise to different anomalous phenotypes with early postnatal lethalities. Newborns with maternal duplication (MatDp(dist2)) are long, thin and hypoactive whereas those with paternal duplication (PatDp(dist2)) are chunky, oedematous, and hyperactive. Here we focus on PatDp(dist2). Loss of expression of the maternally expressed Gnas transcript at the Gnas cluster has been thought to account for the PatDp(dist2) phenotype. But PatDp(dist2) also have two expressed doses of the paternally expressed Gnasxl transcript. Through the use of targeted mutations, we have generated PatDp(dist2) mice predicted to have 1 or 2 expressed doses of Gnasxl, and 0, 1 or 2 expressed doses of Gnas. We confirm that oedema is due to lack of expression of imprinted Gnas alone. We show that it is the combination of a double dose of Gnasxl, with no dose of imprinted Gnas, that gives rise to the characteristic hyperactive, chunky, oedematous, lethal PatDp(dist2) phenotype, which is also hypoglycaemic. However PatDp(dist2) mice in which the dosage of the Gnasxl and Gnas is balanced (either 2:2 or 1:1) are neither dysmorphic nor hyperactive, have normal glucose levels, and are fully viable. But PatDp(dist2) with biallelic expression of both Gnasxl and Gnas show a marked postnatal growth retardation. Our results show that most of the PatDp(dist2) phenotype is due to overexpression of Gnasxl combined with loss of expression of Gnas, and suggest that Gnasxl and Gnas may act antagonistically in a number of tissues and to cause a wide range of phenotypic effects. It can be concluded that monoallelic expression of both Gnasxl and Gnas is a requirement for normal postnatal growth and development. © 2013 Ball et al.


McGoldrick P.,University College London | Joyce P.I.,Medical Research Council Mammalian Genetics Unit | Fisher E.M.C.,University College London | Greensmith L.,University College London
Biochimica et Biophysica Acta - Molecular Basis of Disease | Year: 2013

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterised by the degeneration of upper and lower motor neurons. Recent advances in our understanding of some of the genetic causes of ALS, such as mutations in SOD1, TARDBP, FUS and VCP have led to the generation of rodent models of the disease, as a strategy to help our understanding of the pathophysiology of ALS and to assist in the development of therapeutic strategies. This review provides detailed descriptions of TDP-43, FUS and VCP models of ALS, and summarises potential therapeutics which have been recently trialled in rodent models of the disease. This article is part of a Special Issue entitled: Animal Models of Disease. © 2013 Elsevier B.V.


D'Adamo M.C.,University of Perugia | Shang L.,University of Oxford | Imbrici P.,University of Perugia | Brown S.D.M.,University of Oxford | And 3 more authors.
Journal of Biological Chemistry | Year: 2011

The molecular identity of ion channels which confer PCO2/pH sensitivity in the brain is unclear. Heteromeric Kir4.1/Kir5.1 channels are highly sensitive to inhibition by intracellular pH and are widely expressed in several brainstem nuclei involved in cardiorespiratory control, including the locus coeruleus. This has therefore led to a proposed role for these channels in neuronal CO2 chemosensitivity. To examine this, we generated mutant mice lacking the Kir5.1 (Kcnj16) gene. We show that although locus coeruleus neurons from Kcnj16(+/+) mice rapidly respond to cytoplasmic alkalinization and acidification, those from Kcnj16(-/-) mice display a dramatically reduced and delayed response. These results identify Kir5.1 as an important determinant of PCO2/pH sensitivity in locus coeruleus neurons and suggest that Kir5.1 may be involved in the response to hypercapnic acidosis. © 2011 by The American Society for Biochemistry and Molecular Biology, Inc.


Mburu P.,Medical Research Council Mammalian Genetics Unit | Romero M.R.,Medical Research Council Mammalian Genetics Unit | Hilton H.,Medical Research Council Mammalian Genetics Unit | Parker A.,Medical Research Council Mammalian Genetics Unit | And 3 more authors.
PLoS ONE | Year: 2010

A complex of proteins scaffolded by the PDZ protein, whirlin, reside at the stereocilia tip and are critical for stereocilia development and elongation. We have shown that in outer hair cells (OHCs) whirlin is part of a larger complex involving the MAGUK protein, p55, and protein 4.1R. Whirlin interacts with p55 which is expressed exclusively in outer hair cells (OHC) in both the long stereocilia that make up the stereocilia bundle proper as well as surrounding shorter microvilli that will eventually regress. In erythrocytes, p55 forms a tripartite complex with protein 4.1R and glycophorin C promoting the assembly of actin filaments and the interaction of whirlin with p55 indicates that it plays a similar role in OHC stereocilia. However, the components directly involved in actin filament regulation in stereocilia are unknown. We have investigated additional components of the whirlin interactome by identifying interacting partners to p55. We show that the actin capping and severing protein, gelsolin, is a part of the whirlin complex. Gelsolin is detected in OHC where it localizes to the tips of the shorter rows but not to the longest row of stereocilia and the pattern of localisation at the apical hair cell surface is strikingly similar to p55. Like p55, gelsolin is ablated in the whirler and shaker2 mutants. Moreover, in a gelsolin mutant, stereocilia in the apex of the cochlea become long and straggly indicating defects in the regulation of stereocilia elongation. The identification of gelsolin provides for the first time a link between the whirlin scaffolding protein complex involved in stereocilia elongation and a known actin regulatory molecule. © 2010 Mburu et al.


Rose C.,University of Cambridge | Menzies F.M.,University of Cambridge | Renna M.,University of Cambridge | Acevedo-Arozena A.,Medical Research Council Mammalian Genetics Unit | And 4 more authors.
Human Molecular Genetics | Year: 2010

Huntington's disease (HD) is an autosomal dominant neurodegenerative disease caused by a polyglutamine expansion in huntingtin. There are no treatments that are known to slow the neurodegeneration caused by this mutation. Mutant huntingtin causes disease via a toxic gain-of-function mechanism and has the propensity to aggregate and form intraneuronal inclusions. One therapeutic approach for HD is to enhance the degradation of the mutant protein. We have shown that this can be achieved by upregulating autophagy, using the drug rapamycin. In order to find safer ways of inducing autophagy for clinical purposes, we previously screened United States Food and Drug Administration-approved drugs for their autophagy-stimulating potential. This screen suggested that rilmenidine, a well tolerated, safe, centrally acting anti-hypertensive drug, could induce autophagy in cell culture via a pathway that was independent of the mammalian target of rapamycin. Here we have shown that rilmenidine induces autophagy in mice and in primary neuronal culture. Rilmenidine administration attenuated the signs of disease in a HD mouse model and reduced levels of the mutant huntingtin fragment. As rilmenidine has a long safety record and is designed for chronic use, our data suggests that it should be considered for the treatment of HD and related conditions. © The Author 2010. Published by Oxford University Press.


PubMed | Medical Research Council Mammalian Genetics Unit
Type: Journal Article | Journal: PloS one | Year: 2016

Genomic imprinting results in parent-of-origin-dependent monoallelic gene expression. Early work showed that distal mouse chromosome 2 is imprinted, as maternal and paternal duplications of the region (with corresponding paternal and maternal deficiencies) give rise to different anomalous phenotypes with early postnatal lethalities. Newborns with maternal duplication (MatDp(dist2)) are long, thin and hypoactive whereas those with paternal duplication (PatDp(dist2)) are chunky, oedematous, and hyperactive. Here we focus on PatDp(dist2). Loss of expression of the maternally expressed Gnas transcript at the Gnas cluster has been thought to account for the PatDp(dist2) phenotype. But PatDp(dist2) also have two expressed doses of the paternally expressed Gnasxl transcript. Through the use of targeted mutations, we have generated PatDp(dist2) mice predicted to have 1 or 2 expressed doses of Gnasxl, and 0, 1 or 2 expressed doses of Gnas. We confirm that oedema is due to lack of expression of imprinted Gnas alone. We show that it is the combination of a double dose of Gnasxl, with no dose of imprinted Gnas, that gives rise to the characteristic hyperactive, chunky, oedematous, lethal PatDp(dist2) phenotype, which is also hypoglycaemic. However PatDp(dist2) mice in which the dosage of the Gnasxl and Gnas is balanced (either 22 or 11) are neither dysmorphic nor hyperactive, have normal glucose levels, and are fully viable. But PatDp(dist2) with biallelic expression of both Gnasxl and Gnas show a marked postnatal growth retardation. Our results show that most of the PatDp(dist2) phenotype is due to overexpression of Gnasxl combined with loss of expression of Gnas, and suggest that Gnasxl and Gnas may act antagonistically in a number of tissues and to cause a wide range of phenotypic effects. It can be concluded that monoallelic expression of both Gnasxl and Gnas is a requirement for normal postnatal growth and development.

Loading Medical Research Council Mammalian Genetics Unit collaborators
Loading Medical Research Council Mammalian Genetics Unit collaborators