Entity

Time filter

Source Type


Peters J.,Medical Research Council Mammalian Genetics Unit
Nature Reviews Genetics | Year: 2014

Genomic imprinting is an epigenetic phenomenon that results in monoallelic gene expression according to parental origin. It has long been established that imprinted genes have major effects on development and placental biology before birth. More recently, it has become evident that imprinted genes also have important roles after birth. In this Review, I bring together studies of the effects of imprinted genes from the prenatal period onwards. Recent work on postnatal stages shows that imprinted genes influence an extraordinarily wide-ranging array of biological processes, the effects of which extend into adulthood, and play important parts in common diseases that range from obesity to psychiatric disorders. © 2014 Macmillan Publishers Limited. All rights reserved. Source


McGoldrick P.,University College London | Joyce P.I.,Medical Research Council Mammalian Genetics Unit | Fisher E.M.C.,University College London | Greensmith L.,University College London
Biochimica et Biophysica Acta - Molecular Basis of Disease | Year: 2013

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterised by the degeneration of upper and lower motor neurons. Recent advances in our understanding of some of the genetic causes of ALS, such as mutations in SOD1, TARDBP, FUS and VCP have led to the generation of rodent models of the disease, as a strategy to help our understanding of the pathophysiology of ALS and to assist in the development of therapeutic strategies. This review provides detailed descriptions of TDP-43, FUS and VCP models of ALS, and summarises potential therapeutics which have been recently trialled in rodent models of the disease. This article is part of a Special Issue entitled: Animal Models of Disease. © 2013 Elsevier B.V. Source


Joyce P.I.,University of Bristol | Satija R.,Medical Research Council Mammalian Genetics Unit | Satija R.,Massachusetts Institute of Technology | Chen M.,University of Bristol | Kuwabara P.E.,University of Bristol
PLoS Genetics | Year: 2012

The calpains are physiologically important Ca 2+-activated regulatory proteases, which are divided into typical or atypical sub-families based on constituent domains. Both sub-families are present in mammals, but our understanding of calpain function is based primarily on typical sub-family members. Here, we take advantage of the model organism Caenorhabditis elegans, which expresses only atypical calpains, to extend our knowledge of the phylogenetic evolution and function of calpains. We provide evidence that a typical human calpain protein with a penta EF hand, detected using custom profile hidden Markov models, is conserved in ancient metazoans and a divergent clade. These analyses also provide evidence for the lineage-specific loss of typical calpain genes in C. elegans and Ciona, and they reveal that many calpain-like genes lack an intact catalytic triad. Given the association between the dysregulation of typical calpains and human degenerative pathologies, we explored the phenotypes, expression profiles, and consequences of inappropriate reduction or activation of C. elegans atypical calpains. These studies show that the atypical calpain gene, clp-1, contributes to muscle degeneration and reveal that clp-1 activity is sensitive to genetic manipulation of [Ca 2+] i. We show that CLP-1 localizes to sarcomeric sub-structures, but is excluded from dense bodies (Z-disks). We find that the muscle degeneration observed in a C. elegans model of dystrophin-based muscular dystrophy can be suppressed by clp-1 inactivation and that nemadipine-A inhibition of the EGL-19 calcium channel reveals that Ca 2+ dysfunction underlies the C. elegans MyoD model of myopathy. Taken together, our analyses highlight the roles of calcium dysregulation and CLP-1 in muscle myopathies and suggest that the atypical calpains could retain conserved roles in myofilament turnover. © 2012 Joyce et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Source


D'Adamo M.C.,University of Perugia | Shang L.,University of Oxford | Imbrici P.,University of Perugia | Brown S.D.M.,University of Oxford | And 3 more authors.
Journal of Biological Chemistry | Year: 2011

The molecular identity of ion channels which confer PCO2/pH sensitivity in the brain is unclear. Heteromeric Kir4.1/Kir5.1 channels are highly sensitive to inhibition by intracellular pH and are widely expressed in several brainstem nuclei involved in cardiorespiratory control, including the locus coeruleus. This has therefore led to a proposed role for these channels in neuronal CO2 chemosensitivity. To examine this, we generated mutant mice lacking the Kir5.1 (Kcnj16) gene. We show that although locus coeruleus neurons from Kcnj16(+/+) mice rapidly respond to cytoplasmic alkalinization and acidification, those from Kcnj16(-/-) mice display a dramatically reduced and delayed response. These results identify Kir5.1 as an important determinant of PCO2/pH sensitivity in locus coeruleus neurons and suggest that Kir5.1 may be involved in the response to hypercapnic acidosis. © 2011 by The American Society for Biochemistry and Molecular Biology, Inc. Source


Williamson C.M.,Medical Research Council Mammalian Genetics Unit | Ball S.T.,Medical Research Council Mammalian Genetics Unit | Dawson C.,Babraham Institute | Mehta S.,Medical Research Council Mammalian Genetics Unit | And 8 more authors.
PLoS Genetics | Year: 2011

There is increasing evidence that non-coding macroRNAs are major elements for silencing imprinted genes, but their mechanism of action is poorly understood. Within the imprinted Gnas cluster on mouse chromosome 2, Nespas is a paternally expressed macroRNA that arises from an imprinting control region and runs antisense to Nesp, a paternally repressed protein coding transcript. Here we report a knock-in mouse allele that behaves as a Nespas hypomorph. The hypomorph mediates down-regulation of Nesp in cis through chromatin modification at the Nesp promoter but in the absence of somatic DNA methylation. Notably there is reduced demethylation of H3K4me3, sufficient for down-regulation of Nesp, but insufficient for DNA methylation; in addition, there is depletion of the H3K36me3 mark permissive for DNA methylation. We propose an order of events for the regulation of a somatic imprint on the wild-type allele whereby Nespas modulates demethylation of H3K4me3 resulting in repression of Nesp followed by DNA methylation. This study demonstrates that a non-coding antisense transcript or its transcription is associated with silencing an overlapping protein-coding gene by a mechanism independent of DNA methylation. These results have broad implications for understanding the hierarchy of events in epigenetic silencing by macroRNAs. © 2011 Williamson et al. Source

Discover hidden collaborations