Entity

Time filter

Source Type


Delvecchio F.R.,Laboratory of Experimental Immunopathology | Vadrucci E.,Laboratory of Experimental Immunopathology | Cavalcanti E.,Laboratory of Experimental Immunopathology | De Santis S.,Laboratory of Experimental Immunopathology | And 10 more authors.
European Journal of Immunology | Year: 2015

Currently little is known as to how nutritionally derived compounds may affect dendritic cell (DC) maturation and potentially prevent inappropriate inflammatory responses that are characteristic of chronic inflammatory syndromes. Previous observations have demonstrated that two polyphenols quercetin and piperine delivered through reconstituted oil bodies (ROBs-QP) can influence DC maturation in response to LPS leading to a modulated inflammatory response. In the present study, we examined the molecular effects of ROBs-QP exposure on DC differentiation in mice and identified a unique molecular signature in response to LPS administration that potentially modulates DC maturation and activity in inflammatory conditions. Following LPS administration, ROBs-QP-exposed DCs expressed an altered molecular profile as compared with control DCs, including cytokine and chemokine production, chemokine receptor repertoire, and antigen presentation ability. In vivo ROBs-QP administration suppresses antigen-specific T-cell division in the draining lymph nodes resulting from a reduced ability to create stable immunological synapse. Our data demonstrate that polyphenols exposure can drive DCs toward a new anti-inflammatory molecular profile capable of dampening the inflammatory response, highlighting their potential as complementary nutritional approaches in the treatment of chronic inflammatory syndromes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Source


Vacca M.,Fondazione Mario Negri Sud | Vacca M.,University of Chieti Pescara | Vacca M.,University of Bari | Vacca M.,Medical Research Council Human Nutrition Research MRC HNR | And 12 more authors.
PLoS ONE | Year: 2014

Background & Aims: Liver regeneration (LR) is a valuable model for studying mechanisms modulating hepatocyte proliferation. Nuclear receptors (NRs) are key players in the control of cellular functions, being ideal modulators of hepatic proliferation and carcinogenesis. Methods & Results: We used a previously validated RT-qPCR platform to profile modifications in the expression of all 49 members of the NR superfamily in mouse liver during LR. Twenty-nine NR transcripts were significantly modified in their expression during LR, including fatty acid (peroxisome proliferator-activated receptors, PPARs) and oxysterol (liver X receptors, Lxrs) sensors, circadian masters RevErbα and RevErbβ, glucocorticoid receptor (Gr) and constitutive androxane receptor (Car). In order to detect the NRs that better characterize proliferative status vs. proliferating liver, we used the novel Random Forest (RF) analysis to selected a trio of down-regulated NRs (thyroid receptor alpha, Trα; farsenoid X receptor beta, Fxrβ; Pparδ) as best discriminators of the proliferating status. To validate our approach, we further studied PPARδ role in modulating hepatic proliferation. We first confirmed the suppression of PPARδ both in LR and human hepatocellular carcinoma at protein level, and then demonstrated that PPARd agonist GW501516 reduces the proliferative potential of hepatoma cells. Conclusions: Our data suggest that NR transcriptome is modulated in proliferating liver and is a source of biomarkers and bona fide pharmacological targets for the management of liver disease affecting hepatocyte proliferation. © 2014 Vacca et al. Source


Vacca M.,Medical Research Council Human Nutrition Research MRC HNR | Vacca M.,University of Cambridge | Allison M.,University of Cambridge | Griffin J.L.,Medical Research Council Human Nutrition Research MRC HNR | And 2 more authors.
Seminars in Liver Disease | Year: 2015

The term nonalcoholic fatty liver disease (NAFLD) covers a pathologic spectrum from lipid accumulation alone (simple steatosis) to steatosis with associated inflammation and fibrosis (nonalcoholic steatohepatitis [NASH]). Nonalcoholic steatohepatitis can progress to cirrhosis and potentially to hepatocellular carcinoma. Although a genetic predisposition has been highlighted, NAFLD is strongly associated with an unhealthy lifestyle and hypercaloric diet in the context of obesity and metabolic disease. The dysregulation of specific pathways (insulin signaling, mitochondrial function, fatty acid, and lipoprotein metabolism) have been linked to steatosis, but elucidating the molecular events determining evolution of the disease still requires further research before it can be translated into specific personalized interventional strategies. In this review, the authors focus on the early events of the pathophysiology of NASH, dissecting the metabolic and nutritional pathways involving fatty acids and glucose sensors that can modulate lipid accumulation in the liver, but also condition the progression to cirrhosis and hepatocellular carcinoma. © 2015 by Thieme Medical Publishers, Inc. Source


Ament Z.,Medical Research Council Human Nutrition Research MRC HNR | Ament Z.,University of Cambridge | Waterman C.L.,Syngenta | West J.A.,Medical Research Council Human Nutrition Research MRC HNR | And 6 more authors.
Journal of Proteome Research | Year: 2013

Non-genotoxic carcinogens (NGCs) promote tumor growth by altering gene expression, which ultimately leads to cancer without directly causing a change in DNA sequence. As a result NGCs are not detected in mutagenesis assays. While there are proposed biomarkers of carcinogenic potential, the definitive identification of non-genotoxic carcinogens still rests with the rat and mouse long-term bioassay. Such assays are expensive and time-consuming and require a large number of animals, and their relevance to human health risk assessments is debatable. Metabolomics and lipidomics in combination with pathology and clinical chemistry were used to profile perturbations produced by 10 compounds that represented a range of rat non-genotoxic hepatocarcinogens (NGC), non-genotoxic non-hepatocarcinogens (non-NGC), and a genotoxic hepatocarcinogen. Each compound was administered at its maximum tolerated dose level for 7, 28, and 91 days to male Fisher 344 rats. Changes in liver metabolite concentration differentiated the treated groups across different time points. The most significant differences were driven by pharmacological mode of action, specifically by the peroxisome proliferator activated receptor alpha (PPAR-α) agonists. Despite these dominant effects, good predictions could be made when differentiating NGCs from non-NGCs. Predictive ability measured by leave one out cross validation was 87% and 77% after 28 days of dosing for NGCs and non-NGCs, respectively. Among the discriminatory metabolites we identified free fatty acids, phospholipids, and triacylglycerols, as well as precursors of eicosanoid and the products of reactive oxygen species linked to processes of inflammation, proliferation, and oxidative stress. Thus, metabolic profiling is able to identify changes due to the pharmacological mode of action of xenobiotics and contribute to early screening for non-genotoxic potential. © 2013 American Chemical Society. Source


Pereira D.I.A.,Medical Research Council Human Nutrition Research MRC HNR | Mergler B.I.,Medical Research Council Human Nutrition Research MRC HNR | Faria N.,Medical Research Council Human Nutrition Research MRC HNR | Bruggraber S.F.A.,Medical Research Council Human Nutrition Research MRC HNR | And 6 more authors.
PLoS ONE | Year: 2013

Dietary non-heme iron contains ferrous [Fe(II)] and ferric [Fe(III)] iron fractions and the latter should hydrolyze, forming Fe(III) oxo-hydroxide particles, on passing from the acidic stomach to less acidic duodenum. Using conditions to mimic the in vivo hydrolytic environment we confirmed the formation of nanodisperse fine ferrihydrite-like particles. Synthetic analogues of these (∼ 10 nm hydrodynamic diameter) were readily adherent to the cell membrane of differentiated Caco-2 cells and internalization was visualized using transmission electron microscopy. Moreover, Caco-2 exposure to these nanoparticles led to ferritin formation (i.e., iron utilization) by the cells, which, unlike for soluble forms of iron, was reduced (p=0.02) by inhibition of clathrin-mediated endocytosis. Simulated lysosomal digestion indicated that the nanoparticles are readily dissolved under mildly acidic conditions with the lysosomal ligand, citrate. This was confirmed in cell culture as monensin inhibited Caco-2 utilization of iron from this source in a dose dependent fashion (p<0.05) whilet soluble iron was again unaffected. Our findings reveal the possibility of an endocytic pathway for acquisition of dietary Fe(III) by the small intestinal epithelium, which would complement the established DMT-1 pathway for soluble Fe(II). © 2013 Pereira et al. Source

Discover hidden collaborations