Entity

Time filter

Source Type


Hart A.J.,Imperial College London | Quinn P.D.,Diamond Light Source | Sampson B.,Imperial College London | Sandison A.,Imperial College London | And 4 more authors.
Acta Biomaterialia | Year: 2010

Implant-derived material from metal-on-metal (MOM) hip arthroplasties may be responsible for an unexplained tissue inflammatory response. The chemical form of the metal species in the tissues is predominantly chromium (Cr), but the currently used techniques have not been able to determine whether this is Cr(III) phosphate or Cr(III) oxide. The analytical challenge must overcome the fact that the metal in the tissues is at a relatively low concentration and tissue preparation or the microscopy beam used can affect the results. Microfocus X-ray spectroscopy using a synchrotron beam is useful in addressing both these issues. Using this technique we compared tissue from failed MOM hips with: (1) tissue from metal-on-polyethylene (MOP) hips; (2) chemical standards; (3) metal discs cut from MOM hips. The most abundant implant-related species in all MOM hip tissues contained Cr. Comparison with standards revealed the chemical form was Cr(III) phosphate, which did not vary with manufacturer type (four types analysed) or level of blood metal ions. Cobalt (Co) and molybdenum (Mo) were occasionally present in areas of high Cr. Co was normally found in a metallic state in the tissue, while Mo was found in an oxidized state. The variety of metallic species may have arisen from corrosion, wear or a combination of both. No evidence of Cr(VI) was seen in the tissues examined. © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. Source


Hart A.J.,Imperial College London | Quinn P.D.,Diamond Light Source | Lali F.,Imperial College London | Sampson B.,Imperial College London | And 7 more authors.
Acta Biomaterialia | Year: 2012

Some types of metal-on-metal (MOM) hip replacements have unacceptably high rates of failure, such as the Ultima TPS MOM hip, with 13.8% failure at 5 years. This has been attributed to an inflammatory reaction following the release of cobalt (Co) and chromium (Cr) from the bearing surfaces and modular junctions. There is in vitro evidence that Co is more important than Cr in the inflammatory process, but there are no reported human tissue studies of the analysis of implant-derived metals. © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. Source

Discover hidden collaborations