Medical Research Council Harwell

Harwell, United Kingdom

Medical Research Council Harwell

Harwell, United Kingdom
Time filter
Source Type

Gulati P.,University of Cambridge | Gulati P.,National Health Research Institute | Cheung M.K.,University of Cambridge | Cheung M.K.,National Health Research Institute | And 21 more authors.
Proceedings of the National Academy of Sciences of the United States of America | Year: 2013

SNPs in the first intron of FTO (fat mass and obesity associated) are strongly associated with human obesity. While it is not yet formally established that this effect is mediated through the actions of the FTO protein itself, loss of function mutations in FTO or its murine homologue Fto result in severe growth retardation, and mice globally overexpressing FTO are obese. The mechanisms through which FTO influences growth and body composition are unknown. We describe a role for FTO in the coupling of amino acid levels to mammalian target of rapamycin complex 1 signaling. These findings suggest that FTO may influence body composition through playing a role in cellular nutrient sensing.

Wills Q.F.,University of Oxford | Livak K.J.,Fluidigm | Tipping A.J.,University College London | Enver T.,University College London | And 4 more authors.
Nature Biotechnology | Year: 2013

Gene expression in multiple individual cells from a tissue or culture sample varies according to cell-cycle, genetic, epigenetic and stochastic differences between the cells. However, single-cell differences have been largely neglected in the analysis of the functional consequences of genetic variation. Here we measure the expression of 92 genes affected by Wnt signaling in 1,440 single cells from 15 individuals to associate single-nucleotide polymorphisms (SNPs) with gene-expression phenotypes, while accounting for stochastic and cell-cycle differences between cells. We provide evidence that many heritable variations in gene function - such as burst size, burst frequency, cell cycle-specific expression and expression correlation/noise between cells - are masked when expression is averaged over many cells. Our results demonstrate how single-cell analyses provide insights into the mechanistic and network effects of genetic variability, with improved statistical power to model these effects on gene expression. © 2013 Nature America, Inc. All rights reserved.

Glasco D.M.,University of Missouri | Glasco D.M.,BobJones University | Sittaramane V.,University of Missouri | Bryant W.,University of Missouri | And 12 more authors.
Developmental Biology | Year: 2012

During development, facial branchiomotor (FBM) neurons, which innervate muscles in the vertebrate head, migrate caudally and radially within the brainstem to form a motor nucleus at the pial surface. Several components of the Wnt/planar cell polarity (PCP) pathway, including the transmembrane protein Vangl2, regulate caudal migration of FBM neurons in zebrafish, but their roles in neuronal migration in mouse have not been investigated in detail. Therefore, we analyzed FBM neuron migration in mouse looptail (Lp) mutants, in which Vangl2 is inactivated. In Vangl2 Lp/+ and Vangl2 Lp/Lp embryos, FBM neurons failed to migrate caudally from rhombomere (r) 4 into r6. Although caudal migration was largely blocked, many FBM neurons underwent normal radial migration to the pial surface of the neural tube. In addition, hindbrain patterning and FBM progenitor specification were intact, and FBM neurons did not transfate into other non-migratory neuron types, indicating a specific effect on caudal migration.Since loss-of-function in some zebrafish Wnt/PCP genes does not affect caudal migration of FBM neurons, we tested whether this was also the case in mouse. Embryos null for Ptk7, a regulator of PCP signaling, had severe defects in caudal migration of FBM neurons. However, FBM neurons migrated normally in Dishevelled (Dvl) 1/2 double mutants, and in zebrafish embryos with disrupted Dvl signaling, suggesting that Dvl function is essentially dispensable for FBM neuron caudal migration. Consistent with this, loss of Dvl2 function in Vangl2 Lp/+ embryos did not exacerbate the Vangl2 Lp/+ neuronal migration phenotype. These data indicate that caudal migration of FBM neurons is regulated by multiple components of the Wnt/PCP pathway, but, importantly, may not require Dishevelled function. Interestingly, genetic-interaction experiments suggest that rostral FBM neuron migration, which is normally suppressed, depends upon Dvl function. © 2012 Elsevier Inc.

PubMed | Amgen Inc., Medical Research Council Harwell and Diabetes Group
Type: Journal Article | Journal: Diabetes | Year: 2016

Insulin resistance in mice typically does not manifest as diabetes due to multiple compensatory mechanisms. Here, we present a novel digenic model of type 2 diabetes in mice heterozygous for a null allele of the insulin receptor and an N-ethyl-N-nitrosourea-induced alternative splice mutation in the regulatory protein phosphatase 2A (PP2A) subunit PPP2R2A. Inheritance of either allele independently results in insulin resistance but not overt diabetes. Doubly heterozygous mice exhibit progressive hyperglycemia, hyperinsulinemia, and impaired glucose tolerance from 12 weeks of age without significant increase in body weight. Alternative splicing of Ppp2r2a decreased PPP2R2A protein levels. This reduction in PPP2R2A containing PP2A phosphatase holoenzyme was associated with decreased serine/threonine protein kinase AKT protein levels. Ultimately, reduced insulin-stimulated phosphorylated AKT levels were observed, a result that was confirmed in Hepa1-6, C2C12, and differentiated 3T3-L1 cells knocked down using Ppp2r2a small interfering RNAs. Altered AKT signaling and expression of gluconeogenic genes in the fed state contributed to an insulin resistance and hyperglycemia phenotype. This model demonstrates how genetic changes with individually small phenotypic effects interact to cause diabetes and how differences in expression of hypomorphic alleles of PPP2R2A and potentially other regulatory proteins have deleterious effects and may therefore be relevant in determining diabetes risk.

Pinnick K.E.,University of Oxford | Nicholson G.,University of Oxford | Nicholson G.,Medical Research Council Harwell | Manolopoulos K.N.,University of Birmingham | And 10 more authors.
Diabetes | Year: 2014

Upper- and lower-body fat depots exhibit opposing associations with obesity-related metabolic disease. We defined the relationship between DEXA-quantified fat depots and diabetes/cardiovascular risk factors in a healthy population-based cohort (n = 3,399). Gynoid fat mass correlated negatively with insulin resistance after total fat mass adjustment, whereas the opposite was seen for abdominal fat. Paired transcriptomic analysis of gluteal subcutaneous adipose tissue (GSAT) and abdominal subcutaneous adipose tissue (ASAT) was performed across the BMI spectrum (n = 49; 21.4-45.5 kg/m2). In both depots, energy-generating metabolic genes were negatively associated and inflammatory genes were positively associated with obesity. However, associations were significantly weaker in GSAT. At the systemic level, arteriovenous release of the proinflammatory cytokine interleukin-6 (n = 34) was lower from GSAT than ASAT. Isolated preadipocytes retained a depotspecific transcriptional "memory" of embryonic developmental genes and exhibited differential promoter DNA methylation of selected genes (HOTAIR, TBX5) between GSAT and ASAT. Short hairpin RNA-mediated silencing identified TBX5 as a regulator of preadipocyte proliferation and adipogenic differentiation in ASAT. In conclusion, intrinsic differences in the expression of developmental genes in regional adipocytes provide a mechanistic basis for diversity in adipose tissue (AT) function. The less inflammatory nature of lower-body AT offers insight into the opposing metabolic disease risk associations between upper- and lower-body obesity. © 2014 by the American Diabetes Association.

Roche D.B.,University of Reading | Buenavista M.T.,University of Reading | Buenavista M.T.,Medical Research Council Harwell | Buenavista M.T.,Diamond Light Source | McGuffin L.J.,University of Reading
PLoS ONE | Year: 2012

The estimation of prediction quality is important because without quality measures, it is difficult to determine the usefulness of a prediction. Currently, methods for ligand binding site residue predictions are assessed in the function prediction category of the biennial Critical Assessment of Techniques for Protein Structure Prediction (CASP) experiment, utilizing the Matthews Correlation Coefficient (MCC) and Binding-site Distance Test (BDT) metrics. However, the assessment of ligand binding site predictions using such metrics requires the availability of solved structures with bound ligands. Thus, we have developed a ligand binding site quality assessment tool, FunFOLDQA, which utilizes protein feature analysis to predict ligand binding site quality prior to the experimental solution of the protein structures and their ligand interactions. The FunFOLDQA feature scores were combined using: simple linear combinations, multiple linear regression and a neural network. The neural network produced significantly better results for correlations to both the MCC and BDT scores, according to Kendall's τ, Spearman's ρ and Pearson's r correlation coefficients, when tested on both the CASP8 and CASP9 datasets. The neural network also produced the largest Area Under the Curve score (AUC) when Receiver Operator Characteristic (ROC) analysis was undertaken for the CASP8 dataset. Furthermore, the FunFOLDQA algorithm incorporating the neural network, is shown to add value to FunFOLD, when both methods are employed in combination. This results in a statistically significant improvement over all of the best server methods, the FunFOLD method (6.43%), and one of the top manual groups (FN293) tested on the CASP8 dataset. The FunFOLDQA method was also found to be competitive with the top server methods when tested on the CASP9 dataset. To the best of our knowledge, FunFOLDQA is the first attempt to develop a method that can be used to assess ligand binding site prediction quality, in the absence of experimental data. © 2012 Roche et al.

PubMed | Medical Research Council Harwell, University of California at Santa Cruz and Medical Research Council Laboratory of Molecular Biology
Type: Journal Article | Journal: Proceedings of the National Academy of Sciences of the United States of America | Year: 2016

The suprachiasmatic nucleus (SCN) defines 24 h of time via a transcriptional/posttranslational feedback loop in which transactivation of Per (period) and Cry (cryptochrome) genes by BMAL1-CLOCK complexes is suppressed by PER-CRY complexes. The molecular/structural basis of how circadian protein complexes function is poorly understood. We describe a novel N-ethyl-N-nitrosourea (ENU)-induced mutation, early doors (Edo), in the PER-ARNT-SIM (PAS) domain dimerization region of period 2 (PER2) (I324N) that accelerates the circadian clock of Per2(Edo/Edo) mice by 1.5 h. Structural and biophysical analyses revealed that Edo alters the packing of the highly conserved interdomain linker of the PER2 PAS core such that, although PER2(Edo) complexes with clock proteins, its vulnerability to degradation mediated by casein kinase 1 (CSNK1E) is increased. The functional relevance of this mutation is revealed by the ultrashort (<19 h) but robust circadian rhythms in Per2(Edo/Edo); Csnk1e(Tau/Tau) mice and the SCN. These periods are unprecedented in mice. Thus, Per2(Edo) reveals a direct causal link between the molecular structure of the PER2 PAS core and the pace of SCN circadian timekeeping.

Tyrer H.E.,Medical Research Council Harwell | Crompton M.,Medical Research Council Harwell | Crompton M.,University of Oxford | Bhutta M.F.,Medical Research Council Harwell | Bhutta M.F.,University of Oxford
Current Allergy and Asthma Reports | Year: 2013

Otitis media (OM) is a common cause of childhood hearing loss. The large medical costs involved in treating this condition have meant that research to understand the pathology of this disease and identify new therapeutic interventions is important. There is evidence that susceptibility to OM has a significant genetic component, although little is known about the key genetic pathways involved. Mouse models for disease have become an important resource to understand a variety of human pathologies, including OM, due to the ability to easily manipulate their genetic components. This has enabled researchers to create models of acute OM, and has aided in the identification of a number of new genes associated with chronic disease, through the use of mutagenesis programs. The use of mouse models has identified a number of key molecular signalling pathways involved in the development of this condition, with genes identified from models shown to be associated with human OM. © 2013 Springer Science+Business Media New York.

Oliver P.L.,University of Oxford | FinelliMatte M.J.,University of Oxford | Edwards B.,University of Oxford | Bitoun E.,University of Oxford | And 5 more authors.
PLoS Genetics | Year: 2011

Oxidative stress is a common etiological feature of neurological disorders, although the pathways that govern defence against reactive oxygen species (ROS) in neurodegeneration remain unclear. We have identified the role of oxidation resistance 1 (Oxr1) as a vital protein that controls the sensitivity of neuronal cells to oxidative stress; mice lacking Oxr1 display cerebellar neurodegeneration, and neurons are less susceptible to exogenous stress when the gene is over-expressed. A conserved short isoform of Oxr1 is also sufficient to confer this neuroprotective property both in vitro and in vivo. In addition, biochemical assays indicate that Oxr1 itself is susceptible to cysteine-mediated oxidation. Finally we show up-regulation of Oxr1 in both human and pre-symptomatic mouse models of amyotrophic lateral sclerosis, indicating that Oxr1 is potentially a novel neuroprotective factor in neurodegenerative disease. © 2011 Oliver et al.

Loading Medical Research Council Harwell collaborators
Loading Medical Research Council Harwell collaborators