Time filter

Source Type

Long Beach, CA, United States

Tolstanova G.,Health Care Group | Tolstanova G.,Taras Shevchenko National University | Deng X.,Health Care Group | Deng X.,University of California at Irvine | And 11 more authors.
Life Sciences | Year: 2011

Aims: Vascular endothelial growth factor (VEGF) and pathologic angiogenesis have been demonstrated to play a pathogenic role in the development and progression of inflammatory bowel disease. Thus, we hypothesized that the potent anti-angiogenic factor endostatin might play a beneficial role in experimental ulcerative colitis (UC). Main methods: We used three animal models of UC: (1) induced by 6% iodoacetamide (IA) in rats, or (2) by 3% dextran sulfate sodium (DSS) in matrix metalloproteinase-9 (MMP-9) knockout (KO) and wild-type mice, and (3) interleukin-10 (IL-10) KO mice. Groups of MMP-9 KO mice with DSS-induced UC were treated with endostatin or water for 5 days. Key findings: We found concomitant upregulation of VEGF, PDGF, MMP-9 and endostatin in both rat and mouse models of UC. A positive correlation between the levels of endostatin or VEGF and the sizes of colonic lesions was seen in IA-induced UC. The levels and activities of MMP-9 were also significantly increased during UC induced by IA and IL-10 KO. Deletion of MMP-9 decreased the levels of endostatin in both water- and DSS-treated MMP-9 KO mice. Treatment with endostatin significantly improved DSS-induced UC in MMP-9 KO mice. Significance: 1) Concomitantly increased endostatin is a defensive response to the increased VEGF in UC, 2) MMP-9 is a key enzyme to generate endostatin which may modulate the balance between VEGF and endostatin during experimental UC, and 3) endostatin treatment plays a beneficial role in UC. Thus, anti-angiogenesis seems to be a new therapeutic option for UC. Source

Paunovic B.,Diagnostic Healthcare | Deng X.,Diagnostic Healthcare | Khomenko T.,Diagnostic Healthcare | Ahluwalia A.,Medical Health Care Group | And 7 more authors.
Journal of Pharmacology and Experimental Therapeutics | Year: 2011

We demonstrated previously that basic fibroblast growth factor (bFGF) accelerated the healing of experimental duodenal ulcers, and we now hypothesize that bFGF might also accelerate the healing of experimental ulcerative colitis (UC). We also explored the potential molecular mechanisms involved in the accelerated healing of UC in rats treated with bFGF. The results demonstrated that colonic lesions were significantly reduced by bFGF treatment, whereas neutralization of bFGF aggravated iodoacetamide-induced UC. Protein expression of bFGF was increased during the healing stage of UC. Tumor necrosis factor-α levels and myeloperoxidase activity were significantly decreased in UC rats treated with bFGF, whereas they increased in rats treated with anti-bFGF antibody. Real-time polymerase chain reaction and immunohistochemistry showed decreased levels of p27 in the UC rats compared with the healthy controls, which was reversed by bFGF treatment in a dose-dependent manner. By immunohistochemistry and double labeling of Ki-67 and CD34, prominent positive staining of Ki-67 and CD34 was seen after bFGF treatment, indicating the enhanced proliferation of fibroblasts and epithelial and endothelial cells, i.e., angiogenesis. We conclude that bFGF plays a beneficial role in the healing of UC in rats. The molecular mechanisms of bFGF in UC healing not only involve the expected increased cell proliferation, especially angiogenesis, but also encompass the reduction of inflammatory cytokines and infiltration of inflammatory cells. Thus, bFGF enema may be a new therapeutic option for UC. Copyright © 2011 by The American Society for Pharmacology and Experimental Therapeutics Printed in U.S.A. Source

Discover hidden collaborations