Entity

Time filter

Source Type

Prior Lake, MN, United States

Amromin E.L.,Mechmath LLC
Applied Ocean Research | Year: 2015

Bottom ventilated cavitation has been proven as a very effective drag reduction technology for river ships and planning boats. The ability of this technology to withstand the sea wave impact usual for seagoing ships depends on the ship bottom shape and could be enhanced by some active flow control devices. Therefore, there is the need in numerical tools to estimate the effects of bottom changes and to design such devices. The fundamentals of active flow control for the ship bottom ventilated cavitation are considered here on the basis of a special model of cavitating flows. This model takes into account the air compressibility in the cavity, as well as the multi-frequency nature of the incoming flow in wavy seas and of the cavity response on perturbations by incoming flow. The numerical method corresponding to this model was developed and widely manifested with an example of a ship model tested in a towing tank at Froude numbers between 0.4 and 0.7.The impact of waves in head seas and following seas on cavities has been studied in the range of wavelengths from 0.45 to 1.2 of the model (or ship) length. An oscillating cavitator-spoiler was considered as the flow controlling devices in this study. The oscillation magnitude and the phase shift between cavitator oscillation and the incoming waves have been varied to determine the best flow control parameters. The main results of the provided computational analysis include oscillations of cavity surface, of the pressure in cavity and of the moment of hydrodynamic load on the cavitator. The major part of computations has been carried out for the flap oscillating at the frequency coinciding with the wave frequency, but the effect of a frequency shift is also analyzed. © 2015 Elsevier Ltd. Source


Amromin E.L.,Mechmath LLC
Ocean Engineering | Year: 2012

There is no secondary flow in a boundary layer where streamlines coincide with the surface geodesic curves and earlier this coincidence was mathematically proven for constant pressure surfaces in ideal incompressible fluid. Two 3D inverse problems on determination of such surfaces are solved here: Design of a surface between the given body bow and an initially undetermined body cylindrical central part; Fitting such a surface with an initially undetermined bow to the given body cylindrical part. © 2012 Elsevier Ltd. Source


Amromin E.,Mechmath LLC
Journal of Fluids Engineering, Transactions of the ASME | Year: 2010

The effect of air flux from ventilated partial cavities on drag of bodies was studied. An integral equation method for estimation of air bubble effects on drag was employed and validated with earlier known experimental data for flat plates and bodies. The qualitative difference in the effects of flow speed and air supply rate on drag of flat plates and bodies was numerically confirmed and explained as a combined effect of the boundary layer density decrease and the increase in its displacement thickness. The numerical analysis shows reduction in the total drag of ventilated bodies with increasing air flux rate up to an optimum, but the drag rise for greater rates. A synergy of friction reduction under attached ventilated cavity and microbubble drag reduction downstream of it was shown. Copyright © 2010 by ASME. Source


Amromin E.,Mechmath LLC
Physics of Fluids | Year: 2016

Cavities behind a surface irregularity appear in vortices drifting downstream of it. Cavitation can occur there substantially earlier than over smooth surfaces of the same bodies. Cavitation inception and desinence behind surface irregularities have been intensively studied in the course of water tunnel experiments several decades ago, but no corresponding quantitative theoretical (numerical) analysis was reported. This numerical study is aimed at elaboration of a general approach to the prediction of cavitation desinence numbers for various irregularities over various surfaces and on determination of the major factors influencing these numbers in both computations and experiments. The developed multi-level computational method employs diverse models for flow zones of diverse scale. The viscous-inviscid interaction approach is used for the flow around irregularities submerged (or partially submerged) in the turbulent boundary layer. Combinations of the semi-empirical and asymptotic analyses are used for vortices and cavities in their cores. The computational method is validated with various known experimental data. Source


Amromin E.L.,Mechmath LLC
Applied Ocean Research | Year: 2016

The successful designs of hulls for ships employing drag reduction by air bottom cavitation have been based on solutions of inverse problems of the theory of ideal incompressible fluid. However, prediction of the drag reduction ratio, the air demand by ventilated cavities and the cavity impact on the hull–propeller interaction is impossible in the framework of this theory because all mentioned characteristics depend on interaction of air cavities with the ship boundary layers. Because the known CFD tools are not fitted to ventilated cavitation at low Froude numbers, an analysis of this interaction requires a novel flow model. This model includes the incompressible air flow in the ventilated cavity, the compressible flow of a water–air mixture in the boundary layer on cavities and downstream of them and the curl-free incompressible outer water flow. The provided 2D computations employing this model allows for explanations of the earlier observed effects and for prediction of the air demand by ventilated cavities. The computed velocity profiles downstream of cavities are in the accordance with the available experimental data. © 2016 Elsevier Ltd Source

Discover hidden collaborations