Nebraska City, NE, United States
Nebraska City, NE, United States

Time filter

Source Type

News Article | May 2, 2017
Site: www.eurekalert.org

PULLMAN, Wash. - A WSU research team for the first time has developed a promising way to recycle the popular carbon fiber plastics that are used in everything from modern airplanes and sporting goods to the wind energy industry. The work, reported in Polymer Degradation and Stability, provides an efficient way to re-use the expensive carbon fiber and other materials that make up the composites. Carbon fiber reinforced plastics are increasingly popular in many industries, particularly aviation, because they are light and strong. They are, however, very difficult to break down or recycle, and disposing of them has become of increasing concern. While thermoplastics, the type of plastic used in milk bottles, can be melted and easily re-used, most composites used in planes are thermosets. These types of plastics are cured and can't easily be undone and returned to their original materials. To recycle them, researchers mostly have tried grinding them down mechanically or breaking them down with very high temperatures or harsh chemicals to recover the expensive carbon fiber. Oftentimes, however, the carbon fiber is damaged in the process. The caustic chemicals used are hazardous and difficult to dispose of. They also destroy the matrix resin materials in the composites, creating a messy mixture of chemicals and an additional waste problem. In their project, Jinwen Zhang, a professor in the School of Mechanical and Materials Engineering, and his team developed a new chemical recycling method that used mild acids as catalysts in liquid ethanol at a relatively low temperature to break down the thermosets. In particular, it was the combination of chemicals that proved effective, said Zhang, who has a chemistry background. To break down cured materials effectively, the researchers raised the temperature of the material so that the catalyst-containing liquid can penetrate into the composite and break down the complex structure. Zhang used ethanol to make the resins expand and zinc chloride to break down critical carbon-nitrogen bonds. "It is critical to develop efficient catalytic systems that are capable of permeating into the cured resins and breaking down the chemical bonds of cured resins," he said. The researchers were able to preserve the carbon fibers as well as the resin material in a useful form that could be easily re-used. They have filed for a patent and are working to commercialize their methods. The work was funded by the Joint Center for Aerospace Technology Innovation (JCATI) in collaboration with industry partner, Global Fiberglass Solutions. The state-funded JCATI works to support the Washington's aerospace industry by pursuing research that is relevant to aerospace companies and by providing industry-focused research opportunities. In addition to Zhang, researchers on the project included Junna Xin, assistant research professor, Tuan Liu, postdoctoral research associate, and graduate student Xiaolong Guo. The research is in keeping with WSU's Grand Challenges initiative stimulating research to address some of society's most complex issues. It is particularly relevant to the challenge of "Smart Systems" and its theme of foundational and emergent materials.


News Article | May 2, 2017
Site: www.rdmag.com

A WSU research team for the first time has developed a promising way to recycle the popular carbon fiber plastics that are used in everything from modern airplanes and sporting goods to the wind energy industry. The work, reported in Polymer Degradation and Stability, provides an efficient way to re-use the expensive carbon fiber and other materials that make up the composites. Carbon fiber reinforced plastics are increasingly popular in many industries, particularly aviation, because they are light and strong. They are, however, very difficult to break down or recycle, and disposing of them has become of increasing concern. While thermoplastics, the type of plastic used in milk bottles, can be melted and easily re-used, most composites used in planes are thermosets. These types of plastics are cured and can't easily be undone and returned to their original materials. To recycle them, researchers mostly have tried grinding them down mechanically or breaking them down with very high temperatures or harsh chemicals to recover the expensive carbon fiber. Oftentimes, however, the carbon fiber is damaged in the process. The caustic chemicals used are hazardous and difficult to dispose of. They also destroy the matrix resin materials in the composites, creating a messy mixture of chemicals and an additional waste problem. In their project, Jinwen Zhang, a professor in the School of Mechanical and Materials Engineering, and his team developed a new chemical recycling method that used mild acids as catalysts in liquid ethanol at a relatively low temperature to break down the thermosets. In particular, it was the combination of chemicals that proved effective, said Zhang, who has a chemistry background. To break down cured materials effectively, the researchers raised the temperature of the material so that the catalyst-containing liquid can penetrate into the composite and break down the complex structure. Zhang used ethanol to make the resins expand and zinc chloride to break down critical carbon-nitrogen bonds. "It is critical to develop efficient catalytic systems that are capable of permeating into the cured resins and breaking down the chemical bonds of cured resins," he said. The researchers were able to preserve the carbon fibers as well as the resin material in a useful form that could be easily re-used. They have filed for a patent and are working to commercialize their methods.


News Article | May 8, 2017
Site: compositesmanufacturingmagazine.com

A team of researchers from Washington State University (WSU) has developed a method to recycle carbon fiber reinforced polymer (CFRP) composites that strays from traditional approaches. The researchers’ method does what only a handful have been able to accomplish: recycling epoxy-based thermoset composites. As the researchers explain, thermoplastics are easily recycled, but thermosets are not due to their cured resin. For the research, Jinwen Zhang, a professor in the WSU School of Mechanical and Materials Engineering, and his team studied a chemical recycling method that used mild acids as catalysts in liquid ethanol at a relatively low temperature to break down the thermosets.  To break down cured materials effectively, the researchers raised the temperature of the material so that the catalyst-containing liquid could penetrate into the composite and break down the complex structure. The approach is similar to Hayward, Calif.-based company Connora Technologies’ approach, which also breaks down thermoset CFRP composites at the chemistry level. Zhang says the combination of chemicals is what makes the approach effective. The team used ethanol to make the resins expand and zinc chloride to break down critical carbon-nitrogen bonds. “It is critical to develop efficient catalytic systems that are capable of permeating into the cured resins and breaking down the chemical bonds of cured resins,” Zhang said. The work was funded by the Joint Center for Aerospace Technology Innovation (JCATI) in collaboration with Global Fiberglass Solutions. The state-funded JCATI works to support Washington’s aerospace industry by pursuing research that is relevant to aerospace companies and by providing industry-focused research opportunities. The ability to recycle carbon fiber is imperative to the growth of the state’s economy. According to a study by honor society Phi Kappa Phi, Boeing and Airbus each generate as much as a 1 million pounds of cured and uncured carbon fiber prepreg waste each year from Boeing 787 and Airbus A350 XWB production. In the state of Washington alone, 96 composites companies produce 2 million pounds of production waste carbon fiber each year that is sent to a landfill.


News Article | May 4, 2017
Site: www.theengineer.co.uk

Washington State University researchers have developed a method of recycling carbon fibre plastics that are used in modern aircraft and wind turbines. The work, reported in Polymer Degradation and Stability, is claimed to provide an efficient way to re-use the carbon fibre and other materials that make up the composite parts. Carbon fibre reinforced plastics are utilised in a number of industries because they are light and strong but they are also difficult to break down or recycle. Thermoplastics can be melted and re-used but most composites used in planes are thermosets that are cured and can’t easily be undone and returned to their original materials. To recycle the materials, researchers have so far tried grinding them down mechanically or breaking them down with very high temperatures or harsh chemicals to recover the carbon fibre. A problem with the latter process lies in the caustic chemicals that are hazardous and difficult to dispose of. They also destroy the matrix resin materials in the composites, creating a mixture of chemicals and an additional waste problem. In their project, Jinwen Zhang, a professor in the School of Mechanical and Materials Engineering, and his team developed a new chemical recycling method that used mild acids as catalysts in liquid ethanol at a relatively low temperature to break down the thermosets. In particular, it was the combination of chemicals that proved effective, said Zhang. To break down cured materials effectively, the researchers raised the temperature of the material so that the catalyst-containing liquid can penetrate into the composite and break down the complex structure. Zhang used ethanol to make the resins expand and zinc chloride to break down critical carbon-nitrogen bonds. “It is critical to develop efficient catalytic systems that are capable of permeating into the cured resins and breaking down the chemical bonds of cured resins,” he said in a statement. The researchers were able to preserve the carbon fibres as well as the resin material in a useful form that could be easily re-used. They have filed for a patent and are working to commercialise their methods.


News Article | May 2, 2017
Site: phys.org

The work, reported in Polymer Degradation and Stability, provides an efficient way to re-use the expensive carbon fiber and other materials that make up the composites. Carbon fiber reinforced plastics are increasingly popular in many industries, particularly aviation, because they are light and strong. They are, however, very difficult to break down or recycle, and disposing of them has become of increasing concern. While thermoplastics, the type of plastic used in milk bottles, can be melted and easily re-used, most composites used in planes are thermosets. These types of plastics are cured and can't easily be undone and returned to their original materials. To recycle them, researchers mostly have tried grinding them down mechanically or breaking them down with very high temperatures or harsh chemicals to recover the expensive carbon fiber. Oftentimes, however, the carbon fiber is damaged in the process. The caustic chemicals used are hazardous and difficult to dispose of. They also destroy the matrix resin materials in the composites, creating a messy mixture of chemicals and an additional waste problem. In their project, Jinwen Zhang, a professor in the School of Mechanical and Materials Engineering, and his team developed a new chemical recycling method that used mild acids as catalysts in liquid ethanol at a relatively low temperature to break down the thermosets. In particular, it was the combination of chemicals that proved effective, said Zhang, who has a chemistry background. To break down cured materials effectively, the researchers raised the temperature of the material so that the catalyst-containing liquid can penetrate into the composite and break down the complex structure. Zhang used ethanol to make the resins expand and zinc chloride to break down critical carbon-nitrogen bonds. "It is critical to develop efficient catalytic systems that are capable of permeating into the cured resins and breaking down the chemical bonds of cured resins," he said. The researchers were able to preserve the carbon fibers as well as the resin material in a useful form that could be easily re-used. They have filed for a patent and are working to commercialize their methods. More information: Tuan Liu et al, Mild chemical recycling of aerospace fiber/epoxy composite wastes and utilization of the decomposed resin, Polymer Degradation and Stability (2017). DOI: 10.1016/j.polymdegradstab.2017.03.017


News Article | April 18, 2017
Site: www.rdmag.com

An advanced water treatment membrane made of electrically conductive nanofibers developed at Masdar Institute was highlighted by Dr. Raed Hashaikeh, Professor of Mechanical and Materials Engineering at Masdar Institute, in his keynote speech during the 3rd International Conference on Desalination using Membrane Technology held last week in Spain. Self-cleaning membranes offer a critically needed solution to the problem of fouling, which is the unwanted build-up of organic and inorganic deposits on a membrane’s surface that reduces the membrane’s ability to filter impurities. Water treatment and purification membranes that can easily clean themselves when fouled could make pressure-driven membrane filtration systems used to treat and desalinate water more energy-efficient. “Keeping membranes clean, permeable and functional is a great challenge to membrane desalination technologies. When a membrane becomes fouled, its pores get blocked and its flux is severely reduced, which means that much less water can pass through the membrane at a constant pressure,” Dr. Hashaikeh explained. Conventional methods for cleaning fouled membranes involve expensive and harsh chemical treatments, and often lead to water treatment plant shut-downs, which can cost millions of dollars in lost operational hours. In the UAE, annual spending on desalination is already estimated to cost AED12 billion, indicating a pressing need for solutions that avoid costly shut-downs and treatments. In addition to posing a heavy financial burden, fouled membranes are also a sustainability issue, as once a membrane becomes fouled, the higher pressure needed to push water through clogged pores significantly increases the plant’s energy consumption. The harsh chemicals used to clean a fouled membrane are also bad for the environment and require neutralizing. Thus, finding a way to easily and quickly clean fouled membranes not only makes financial sense, but environmental sense. In a country like the UAE, where natural gas-powered thermal desalination produces over 80% of the country’s domestic water, innovative technologies like self-cleaning membranes to support a shift toward lower-energy and lower-cost membrane-based desalination are essential for achieving economic and environmental balance while meeting the UAE’s water demands. And now, Dr. Hashaikeh’s research group may have brought the UAE closer towards realizing a more sustainable and economic approach to membrane desalination through their research on the application of advanced nanofibers for enhanced, self-cleaning membranes. The group has leveraged the electrically conductive nature of a special kind of nanofiber, called carbon nanotubes (CNT). CNTs are tiny cylindrical tubes made of tightly bonded carbon atoms, measuring just one atom thick. But the CNTs Dr. Hashaikeh’s team used, which were provided by global security, aerospace, and information technology company Lockheed Martin, are not ordinary CNTs. “The carbon nanostructures supplied by Lockheed Martin are special; they are networked. This means that they are composed of many interconnecting channels that branch off in all directions. This interconnectivity is what enables the entire membrane to become completely cleaned when electricity is applied to it,” Dr. Hashaikeh said. The networked CNTs, also known as carbon nanostructures (CNS), coupled with the team’s expert membrane fabrication know-how, resulted in the development of two different types of membranes that can clean themselves when a low-voltage electric current is run through them. The first type is a microfiltration membrane, which has pores sizes ranging from 100 nanometers to 10 micrometers, where a nanometer is approximately one hundred thousand times smaller than the width of a human hair and a micrometer one thousand times larger than a nanometer. The second is a nanofiltration membrane with pore sizes ranging from one to ten nanometers. Both membranes demonstrated the ability to clean themselves in response to an electric shock, which resulted in the immediate restoration of the membranes’ flux. Dr. Hashaikeh’s investigation of a self-cleaning membrane began four years ago, when he realized that electrolytic cleaning – which is the process of removing soil, scale or corrosion from a metal’s surface by subjecting it to an electric current – could also be used to clean membranes. To prove his theory, he coated a membrane with ordinary CNTs. When a voltage was applied to the membrane, the parts of the membranes that were coated with CNTs were successfully cleaned. Dr. Hashaikeh filed a patent for this in-situ electrolytic cleaning process with the United States Patent and Trademark Office (USPTO) in 2014. However, there were limitations to this discovery, namely that only specific areas in the coated CNTs were cleaned, not the entire membrane. Thus, to develop an efficient, self-cleaning membrane with commercial potential, Dr. Hashaikeh required a material that would easily allow electric shockwaves to penetrate through the entire membrane’s surface area. The unique, interconnected structure of Lockheed Martin’s carbon nanostructures proved to be just the right type of electrically conductive, nano-fibrous material required. “We immediately recognized that Lockheed Martin’s CNTs might enable electricity to pass through the entire surface, but we had to modify the nanostructures to transform the material into a membrane. To do this, we controlled certain properties, such as wettability and pore size, and improved its mechanical strength by incorporating polymer materials,” he explained. Dr. Haishaikeh’s team successfully developed a self-cleaning microfiltration membrane in 2014 and a paper describing the research was published in the Journal of Membrane Science. But they did not stop there; they wanted to take their research a step further and find a way to develop a self-cleaning nanofiltration membrane. While microfiltration membranes are useful for removing larger particles, including sand, silt, clays, algae and some forms of bacteria, nanofiltration membranes can go a step further, removing most organic molecules, nearly all viruses, most of the natural organic matter and a range of salts. Nanofiltration membranes also remove divalent ions, which make water hard, making nanofiltration a popular and eco-friendly option to soften hard water. To create self-cleaning nanofiltration membranes out of Lockheed Martin’s networked CNTs, the team needed to overcome the problem of the CNTs’ large pore sizes, which prevented the material from functioning as a nanofiltration membrane. To achieve this they looked to a second advanced nanofiber material previously developed by Dr. Hashaikeh’s research group, known as networked cellulose. Networked cellulose is a modified type of cellulose made from wood pulp. When dried, the networked cellulose gel shrinks in volume, but maintains its integrity and shape, becoming harder as it shrinks. The research team asserted that the networked cellulose gel could reduce the membrane’s pore sizes while maintaining its structural integrity. The researchers then mixed the carbon nanostructures with the networked cellulose gel and as the mixture dried, the networked cellulose shrank. The shrinking of the network cellulose in turn pressurized the nanostructures in the membrane. The resulting membrane is strong with much smaller pore sizes. Dr. Hashaikeh reports that the pore size dropped from 60 nanometers to just three nanometers with the addition of the networked cellulose in a paper describing the study, which was published in the journal Desalination last month. Co-authors from Masdar Institute include PhD student Farah Ahmad and postdoctoral researcher Boor Lalia, along with Dr. Nidal Hilal of Swansea University. Dr. Hashaikeh’s prolific scientific contribution to the field of membrane desalination has led to his recent appointment as an associate editor for the journal Desalination; a position that is essential to the quality of the international journal and its peer review process. The innovative research conducted by Dr. Hashaikeh and the team will help position Abu Dhabi as a leader in membrane desalination research and technology development. This project has already yielded a patent filing, and is hoped to provide the emirate with novel intellectual property in the critical industry of desalination.


News Article | February 23, 2017
Site: www.eurekalert.org

PULLMAN, Wash. - A Washington State University study of the chemistry of technetium-99 has improved understanding of the challenging nuclear waste and could lead to better cleanup methods. The work is reported in the journal Inorganic Chemistry. It was led by John McCloy, associate professor in the School of Mechanical and Materials Engineering, and chemistry graduate student Jamie Weaver. Researchers from Pacific Northwest National Laboratory (PNNL), the Office of River Protection and Lawrence Berkeley National Laboratory collaborated. Technetium-99 is a byproduct of plutonium weapons production and is considered a major U.S. challenge for environmental cleanup. At the Hanford Site nuclear complex in Washington state, there are about 2,000 pounds of the element dispersed within approximately 56 million gallons of nuclear waste in 177 storage tanks. The U.S. Department of Energy is in the process of building a waste treatment plant at Hanford to immobilize hazardous nuclear waste in glass. But researchers have been stymied because not all the technetium-99 is incorporated into the glass and volatilized gas must be recycled back into the melter system. The element can be very soluble in water and moves easily through the environment when in certain forms, so it is considered a significant environmental hazard. Because technetium compounds are challenging to work with, earlier research has used less volatile substitutes to try to understand the material's behavior. Some of the compounds themselves have not been studied for 50 years, said McCloy. "The logistics are very challenging," he said. The WSU work was done in PNNL's highly specialized Radiochemical Processing Laboratory and the radiological annex of its Environmental Molecular Sciences Laboratory. The researchers conducted fundamental chemistry tests to better understand technetium-99 and its unique challenges for storage. They determined that the sodium forms of the element behave much differently than other alkalis, which possibly is related to its volatility and to why it may be so reactive with water. "The structure and spectral signatures of these compounds will aid in refining the understanding of technetium incorporation into nuclear waste glasses," said McCloy. The researchers also hope the work will contribute to the study of other poorly understood chemical compounds.


News Article | February 24, 2017
Site: www.rdmag.com

A Washington State University study of the chemistry of technetium-99 has improved understanding of the challenging nuclear waste and could lead to better cleanup methods. The work is reported in the journal Inorganic Chemistry. It was led by John McCloy, associate professor in the School of Mechanical and Materials Engineering, and chemistry graduate student Jamie Weaver. Researchers from Pacific Northwest National Laboratory (PNNL), the Office of River Protection and Lawrence Berkeley National Laboratory collaborated. Technetium-99 is a byproduct of plutonium weapons production and is considered a major U.S. challenge for environmental cleanup. At the Hanford Site nuclear complex in Washington state, there are about 2,000 pounds of the element dispersed within approximately 56 million gallons of nuclear waste in 177 storage tanks. The U.S. Department of Energy is in the process of building a waste treatment plant at Hanford to immobilize hazardous nuclear waste in glass. But researchers have been stymied because not all the technetium-99 is incorporated into the glass and volatilized gas must be recycled back into the melter system. The element can be very soluble in water and moves easily through the environment when in certain forms, so it is considered a significant environmental hazard. Because technetium compounds are challenging to work with, earlier research has used less volatile substitutes to try to understand the material's behavior. Some of the compounds themselves have not been studied for 50 years, said McCloy. "The logistics are very challenging," he said. The WSU work was done in PNNL's highly specialized Radiochemical Processing Laboratory and the radiological annex of its Environmental Molecular Sciences Laboratory. The researchers conducted fundamental chemistry tests to better understand technetium-99 and its unique challenges for storage. They determined that the sodium forms of the element behave much differently than other alkalis, which possibly is related to its volatility and to why it may be so reactive with water. "The structure and spectral signatures of these compounds will aid in refining the understanding of technetium incorporation into nuclear waste glasses," said McCloy. The researchers also hope the work will contribute to the study of other poorly understood chemical compounds.


News Article | February 23, 2017
Site: phys.org

The work is reported in the journal Inorganic Chemistry. It was led by John McCloy, associate professor in the School of Mechanical and Materials Engineering, and chemistry graduate student Jamie Weaver. Researchers from Pacific Northwest National Laboratory (PNNL), the Office of River Protection and Lawrence Berkeley National Laboratory collaborated. Technetium-99 is a byproduct of plutonium weapons production and is considered a major U.S. challenge for environmental cleanup. At the Hanford Site nuclear complex in Washington state, there are about 2,000 pounds of the element dispersed within approximately 56 million gallons of nuclear waste in 177 storage tanks. The U.S. Department of Energy is in the process of building a waste treatment plant at Hanford to immobilize hazardous nuclear waste in glass. But researchers have been stymied because not all the technetium-99 is incorporated into the glass and volatilized gas must be recycled back into the melter system. The element can be very soluble in water and moves easily through the environment when in certain forms, so it is considered a significant environmental hazard. Because technetium compounds are challenging to work with, earlier research has used less volatile substitutes to try to understand the material's behavior. Some of the compounds themselves have not been studied for 50 years, said McCloy."The logistics are very challenging," he said. The WSU work was done in PNNL's highly specialized Radiochemical Processing Laboratory and the radiological annex of its Environmental Molecular Sciences Laboratory. The researchers conducted fundamental chemistry tests to better understand technetium-99 and its unique challenges for storage. They determined that the sodium forms of the element behave much differently than other alkalis, which possibly is related to its volatility and to why it may be so reactive with water. "The structure and spectral signatures of these compounds will aid in refining the understanding of technetium incorporation into nuclear waste glasses," said McCloy. The researchers also hope the work will contribute to the study of other poorly understood chemical compounds. More information: Jamie Weaver et al, Chemical Trends in Solid Alkali Pertechnetates, Inorganic Chemistry (2017). DOI: 10.1021/acs.inorgchem.6b02694


News Article | February 25, 2017
Site: www.techtimes.com

Washington State University conducted tests to study the effects of the chemical substance known as technetium-99. The study was led by John McCloy, an associate professor in the School of Mechanical and Materials Engineering along with Jamie Weaver, a chemistry graduate student. They worked in collaboration with researchers from the Office of River Protection and Lawrence Berkeley National Laboratory and Pacific Northwest National Laboratory. Technetium-99 is the chemical by-product derived as a result of plutonium weapon production. It is being considered a major problem as scientists are trying to find new methods of disposing the nuclear waste. In fact, there exists about 2000 pounds of technetium-99 which is stored in 177 storage tanks at the Hanford nuclear site in Washington. The element is readily soluble in water and so poses an intense risk. Due to its volatility, it can easily contaminate water streams which would cause major health issues. Nuclear wastes are generated from nuclear power plants in significant amounts and thus, it needs to be managed and disposed of properly. The most important issue concerning the nuclear waste is the management of its toxic nature, so that it poses no risk to the workers or the general public. The Washington State University conducted the study of technetium-99 in PNNL's highly specialized Radiochemical Processing Laboratory. Researchers carried out various tests with the compound. Their aim was to precisely observe technetium-99 and determine how it may be stored. They found that the sodium reacts differently in the compound than in any other alkalis, which may go a long way in defining why technetium-99 is so reactive with water. This may also reveal the reason behind its volatility. "The structure and spectral signatures of these compounds will aid in refining the understanding of technetium incorporation into nuclear waste glasses," said McCloy. Currently, U.S. Department of Energy at Hanford is in the act of constructing a waste treatment plant. They aim to store threatening nuclear waste in a glass. However, researchers have to find an alternative as the entire technetium-99 cannot be incorporated in a glass. The volatilized gas would also be needed to be recycled back into the system. These innovative ideas may pave the way for a safer future. However, for now the threat of nuclear contamination due to the high volume of nuclear waste being produced seems to be looming. It has become essential to come up with a reliable way to dispose these wastes of. The study has been published in the journal Inorganic Chemistry. © 2017 Tech Times, All rights reserved. Do not reproduce without permission.

Loading Mechanical and Materials Engineering collaborators
Loading Mechanical and Materials Engineering collaborators