Newton, MA, United States
Newton, MA, United States

Time filter

Source Type

Patent
MEARS Technologies | Date: 2011-01-31

A multiple-wavelength opto-electronic device may include a substrate and a plurality of active optical devices carried by the substrate and operating at different respective wavelengths. Each optical device may include a superlattice comprising a plurality of stacked groups of layers, and each group of layers may include a plurality of stacked semiconductor monolayers defining a base semiconductor portion and at least one non-semiconductor monolayer thereon.


A semiconductor device may include a substrate having a channel recess therein, a plurality of spaced apart shallow trench isolation (STI) regions in the substrate, and source and drain regions spaced apart in the substrate and between a pair of the STI regions. A superlattice channel may be in the channel recess of the substrate and extend between the source and drain regions, with the superlattice channel including a plurality of stacked group of layers, and each group of layers of the superlattice channel including stacked base semiconductor monolayers defining a base semiconductor portion and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions. A replacement gate may be over the superlattice channel.


A semiconductor device may include a substrate and at least one MOSFET adjacent the substrate. The MOSFET may include a superlattice channel including a plurality of stacked groups of layers, a source and a drain adjacent the superlattice channel, and a gate adjacent the superlattice channel. Each group of layers of the superlattice channel may include a plurality of stacked base semiconductor monolayers defining a base semiconductor portion and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions. A first dopant may be in at least one region adjacent at least one of the source and drain, and a second dopant may also be in the at least one region. The second dopant may be different than the first dopant and reduce diffusion thereof.


A method for making a semiconductor device may include forming a plurality of stacked groups of layers on a semiconductor substrate, with each group of layers including a plurality of stacked base semiconductor monolayers defining a base semiconductor portion and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions. The method may further include implanting a dopant in the semiconductor substrate beneath the plurality of stacked groups of layers in at least one localized region, and performing an anneal of the plurality of stacked groups of layers and semiconductor substrate and with the plurality of stacked groups of layers vertically and horizontally constraining the dopant in the at least one localized region.


A semiconductor device may include a substrate, and a plurality of fins spaced apart on the substrate. Each of the fins may include a lower semiconductor fin portion extending vertically upward from the substrate, and at least one superlattice punch-through layer on the lower fin portion. The superlattice punch-through layer may include a plurality of stacked groups of layers, with each group of layers of the superlattice punch-through layer comprising a plurality of stacked base semiconductor monolayers defining a base semiconductor portion and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions. Each fin may also include an upper semiconductor fin portion on the at least one superlattice punch-through layer and extending vertically upward therefrom. The semiconductor device may also include source and drain regions at opposing ends of the fins, and a gate overlying the fins.


A method for making an electronic device may include forming a selectively polable superlattice comprising a plurality of stacked groups of layers. Each group of layers of the selectively polable superlattice may include a plurality of stacked semiconductor monolayers defining a semiconductor base portion and at least one non-semiconductor monolayer thereon. The at least one non-semiconductor monolayer may be constrained within a crystal lattice of adjacent silicon portions, and at least some semiconductor atoms from opposing base semiconductor portions may be chemically bound together through the at least one non-semiconductor monolayer therebetween. The method may further include coupling at least one electrode to the selectively polable superlattice for selective poling thereof.


A semiconductor device may include a substrate, and a plurality of fins spaced apart on the substrate. Each of the fins may include a lower semiconductor fin portion extending vertically upward from the substrate, and at least one superlattice punch-through layer on the lower fin portion. The superlattice punch-through layer may include a plurality of stacked groups of layers, with each group of layers of the superlattice punch-through layer comprising a plurality of stacked base semiconductor monolayers defining a base semiconductor portion and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions. Each fin may also include an upper semiconductor fin portion on the at least one superlattice punch-through layer and extending vertically upward therefrom. The semiconductor device may also include source and drain regions at opposing ends of the fins, and a gate overlying the fins.


A semiconductor device may include an alternating stack of superlattice and bulk semiconductor layers on a substrate, with each superlattice layer including a plurality of stacked group of layers, and each group of layers of the superlattice layer including a plurality of stacked base semiconductor monolayers defining a base semiconductor portion and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions. The semiconductor device may further include spaced apart source and drain regions in an upper bulk semiconductor layer of the alternating stack of superlattice and bulk semiconductor layers, and a gate on the upper bulk semiconductor layer between the spaced apart source and drain regions.


News Article | December 22, 2011
Site: www.xconomy.com

MEARS Technologies is dedicated to delivering a stream of innovative solutions to the global semiconductor industry. We focus on enabling the continued improvement of silicon semiconductor performance at ever finer geometries and increased chip densities.

Loading MEARS Technologies collaborators
Loading MEARS Technologies collaborators